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Abstract

Growing experimental evidence highlights the relevant role of mechanics in the physiology of solid tumours, even in their
early stages. While most of the mathematical models describe tumour growth as a volumetric increase of mass in the bulk, in
vitro experiments on tumour spheroids have demonstrated that cell proliferation occurs in a thin layer at the boundary of
the cellular aggregate. In this work, we investigate how elasticity and surface tension interact during the development of
tumour spheroids. We model the tumour as a hyperelastic material undergoing boundary accretion, where the newly created
cells are deformed by the action of surface tension. This growth leads to a frustrated reference configuration, resulting in
the appearance of residual stress. Our theoretical framework is validated through experimental results of tumour spheroid
cutting. Similar to fully developed tumours, spheroids tend to open when subject to radial cuts. Remarkably, even newly
formed spheroids, which lack residual stress, exhibit this behaviour. Through both analytical solutions and numerical
simulations, we show that this phenomenon is driven by elastocapillary interactions, where the residual stress developed in
grown spheroids amplifies the tumour opening. Our model’s outcomes align with experimental observations and allow us to
estimate the surface tension acting on tumour spheroids.

1 Introduction

Uncontrolled cell proliferation is the main feature
that distinguishes healthy tissues from tumours:
while the physiological growth of tissue is tightly reg-
ulated and self-limited by cell signalling, tumour cells
replicate in an unregulated manner. The huge social
impact of cancer has given the impulse to extensive
research focused on understanding the mechanisms
underlying tumour growth.

Cancer research frequently relies on surrogates to
investigate the dynamics of tumour growth, ranging
from experiments performed in vivo to in vitro. In the
first type of experiments, tumours are implanted and
grown in animals, such as mice [1]. Conversely, in
vitro experiments involve the cultivation of tumour
cells outside a living organism in the laboratory [2].
A notable example is multicellular tumour spher-
oids, which are three-dimensional structures that
self-assemble, forming spherical aggregates.

Tumour spheroids serve as an artificial model mim-
icking the early stages of tumour development. At
this stage, the cells within the spheroid rely on pass-
ive intercellular diffusion for the supply of nutrients
and oxygen, as blood vessels have not yet penetrated
the tumour mass.

Research on tumour spheroids has revealed a
strong connection between mechanical forces and
tumour proliferation [3]: applying compressive load
at the boundary reduces cell mitosis and can induce
apoptosis [4–10]. Furthermore, mechanical pressure
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has been linked to increased invasiveness in cancer
cells [11].

In order to understand how boundary loads drive
the inner mechanical state, a rheological description
of spheroids is essential. Increasing evidence sug-
gests that spheroids exhibit viscoelastic behaviour [8].
For example, similarly to fully developed tumours,
spheroids tend to open when subjected to a radial cut
[12–14]. If the spheroid obeyed a fluid-like behaviour
governed by surface tension, it would reorganize to
minimize surface area, returning to a spherical shape.
Conversely, radially cut tumour spheroids display a
heart-like shape, see Fig. 1. Moreover, even intact
tumour spheroids can exhibit both spherical and cyl-
indrical shapes depending on the initial number of
cells [13], suggesting that while surface tension plays
a role in spheroid physics, other forces also influence
its shape.

The mechanical origin of the deformation follow-
ing the cut is a matter of debate. In [12, 13], the
authors argue that the spheroid opening is driven
by non-homogeneous volumetric growth within the
tumour. In biological systems, non-homogeneous
growth can lead to geometrical incompatibilities that
generate mechanical stress, known as residual stress
[16], even in the absence of external load. Volumetric
growth and residual stresses have been extensively
studied in recent years [7–9], leading to mathematical
models that explain a variety of phenomena in biolo-
gical matter. This has given rise to a field of research
known as morphoelasticity [8, 17, 18]. Successful ap-
plications of morphoelasticity include modelling or-
gan and tissue morphogenesis [19–22], understand-
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Figure 1: (Left) Sections of tumour spheroids with varying radii. Recently dividing cells are coloured green, while dying cells are
indicated in blue (adapted from [15]). (Right) An incised tumour spheroid two days post-seeding, with an initial cell count
of 5000 (adapted from [13]).

ing deformations in arteries [23, 24], and explaining
mechanical instabilities in tumour vessels [25–27].

However, several aspects remain obscure. For in-
stance, the residual stress responsible for tumour
opening following a radial cut is peculiar, requiring
tensile hoop residual stress in the outer region of the
spheroid [3, 8]. Such a stress state can be produced
only if cell proliferation decreases near the free sur-
face [28]. The situation in reality is the opposite: even
in the early stages of spheroid development, cell mi-
tosis occurs in a narrow region close to the spheroid
boundary [5, 6, 15, 29], see Fig. 1. Moreover, the self-
aggregation process of tumour cells leading to the
formation of tumour spheroids usually takes around
two days. In this timeframe, no residual stress should
have formed, and thus no opening would be expec-
ted when a spheroid is cut. However, Guillaume et
al. [13] observed spheroid openings even in these
early stages.

During the initial days, only a thin outer layer of
cells experiences circumferential tension, while the
core remains in an isotropic stress state [30]. This
tensional “skin” at the spheroid’s boundary can be
understood as an effect of tissue surface tension on
the cell aggregate generated by intercellular cohesion
forces and active contractility, as discussed in [31].
This surface phenomenon primarily arises from in-
tercellular cohesion forces and has been shown to
significantly influence the mechanical behaviour of
cell aggregates [31, 32], particularly at small scales
such as those of a spheroid [14, 33].

The aim of this work is to construct a mathemat-
ical model of tumour spheroid growth able to explain
the tumour opening following a radial cut. In Sec-
tion 2, we propose the mathematical model of the
spheroid, where tumour proliferation is described
as a surface accretion mediated by surface tension.
The study of spheroid incision is performed in Sec-
tion 3, where we propose both a simplified analytical
prediction of tumour opening and a quantitative ana-
lysis through numerical simulations and comparison
with experimental results. Finally, the main results
are summarized in Section 4, together with some
concluding remarks.

2 Modelling of the elastocapillarity
of tumour spheroids

In this section we construct a mathematical model
of a tumour spheroid as an elastic body subject to
surface tension. First, we describe the mathematical
setting in the absence of cell proliferation. Second, we
extend the theoretical framework to include surface
growth mediated by capillarity effects.

2.1 A continuum model of tumour
spheroid with tissue surface tension

The tumour spheroid is treated as an elastic con-
tinuum body subject to surface tension. By following
the theory of continuum mechanics, we introduce the
reference configuration Ω0 ⊂ R3. Let (eX , eY, eZ) be
the canonical vector basis.

Let φ : Ω0 → R3 be the deformation field, we
denote by F = Gradφ the deformation gradient. The
current configuration of the body is identified by Ω,
i.e. Ω = φ(Ω0).

Given a point X ∈ Ω0, we denote by x the corres-
ponding point in the current configuration, so that
x = φ(X). We can introduce the displacement field
u as the vector function u(X) = φ(X)− X.

In order to take into account the large elastic de-
formations of the tumour, we assume that the cellular
aggregate can be described as a hyperelastic material.
Let ψr = ψr(F) be its strain energy density. The bulk
elastic energy of the body is thus given by

Eel[φ] =
∫

Ω0

ψr(F)dV. (1)

We can also introduce a surface energy that models
the action of tissue surface tension. As commonly
done in the context of cellular aggregate, we take it
as directly proportional with the current area a of the
external boundary σγ, i.e.

Es[φ] = γa = γ
∫

Σγ

(det F) |F−T N|dA, (2)

where γ is the surface tension, N is the external
normal in the reference configuration, Σγ is the ref-
erential counterpart of the external boundary σγ, i.e.
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σγ = φ(Σγ). The deformation φ must minimize the
energy of the system E , given by

E [φ] = Eel[φ] + Es[φ]. (3)

Since cellular aggregates are mainly composed of
water, we can approximate their behaviour as incom-
pressible, namely the deformation must obey the
constraint

det F = 1. (4)

The stress can be measured in the reference config-
uration by means of the first Piola–Kirchhoff stress
tensor, given by

S =
∂ψr

∂F
− pF−T , (5)

where p is a scalar field that imposes the incompress-
ibility constraint.

The balance equations corresponding to the min-
imization of the energy functional (3) are given by{

Div S = 0 in Ω0,

SN = γKF−T N on Σγ,
(6)

where K is twice the mean curvature of the current
surface σγ. Rigid body motions can be filtered out,
for example, by fixing the displacement of a point of
the body and by requiring zero mean rotation.

In order to proceed with the analysis, we have to
make some constitutive choice on the mechanical be-
haviour of the spheroid. In the following, we assume
that the body Ω0 is composed of a neo–Hookean
material, so that the strain energy density reads

ψr(F) =
µ

2
F : F, (7)

where µ is the shear modulus, while : denotes the
Frobenius scalar product of tensors, i.e. A : B =
tr ATB.

2.2 Surface accretion and surface tension

While the model proposed in the previous section can
describe the pure elastic behaviour of a spheroid, it
is insufficient to capture what occurs as the spheroid
grows. Indeed, spheroids left to grow for several days
in an environment with large availability of nutrients
can generate mechanical stress as a consequence of
their growth. The increase in the opening length of
cut spheroids grown for a few days [13] suggests that
the growing process enhances the natural opening
induced by surface tension by generating a tensile
hoop stress in the outer part of the spheroid.

Analogously to spheroids, incised real tumours
open up, even though surface tension is negligible
due to their larger radius [1]. This deformation res-
ults from the release of the tensile hoop stress in the

outer region, while there is a compressive radial re-
sidual stress in the core [8]. Puzzlingly, to reproduce
this stress pattern using classical volumetric growth
theory, the growth of the tumour spheroid should be
greater in the inner part rather than the outer part
[8, 28], which is precisely the opposite of what is
observed in spheroids. In [15], the proliferation of
cells in tumour spheroids seems to be mainly con-
centrated at the periphery within a layer a few cells
thick, while cells in the bulk duplicate only rarely,
see Fig. 1. Similar behaviours have been reported in
[5, 6, 29].

Differently from previous models [7–10, 28], here
we describe spheroid’s growth as a surface accretion,
where new mass is added at the boundary rather
than in the bulk. We start by considering a time-
dependant reference configuration, i.e. Ω0(t). Let Rt
be the radius of the (intact) tumour spheroid at time
t, so that

Ω0(t) = {X ∈ R3 | ∥X∥ < Rt}.

We indicate with φt the deformation field at time t, so
that Ω(t) = φt(Ω0(t)) is the current configuration at
a given instant of time. We denote by (R, Θ, Φ) and
(r, θ, ϕ) the spherical coordinates in the reference
and current configurations, respectively. Similarly, let
(eR, eΘ, eΦ) and (er, eθ , eϕ) the corresponding vector
basis.

As the spheroid grows, new particles are added
to the system at the boundary of the domain. Due
to the presence of surface tension, the spheroid is
subject to a mechanical load at the boundary. From
(6), we get

T(x, F)n = γKn, (8)

where T = SFT is the Cauchy stress tensor. As the
process of growth is much slower than the charac-
teristic timescale of the deformation, we can safely
neglect inertia and the balance equation (6) still
holds, with Σγ corresponding to the whole boundary
∂Ω0(t).

Among the several frameworks proposed to model
surface growth, see for instance [34–38], we follow
the theory proposed by Truskinovsky and Zurlo in
a series of works [39–41]. This approach accounts
for the elastic distortions induced by the boundary
condition (8) in the material generated on the surface.

To model the elastic frustration in the spheroid,
we assume that ψr, introduced in (7), represents the
strain energy density of the spheroid in its relaxed
state for a volume element of mass density ρ0. We
call this function material archetype [42]. Specifically,
during the deposition of a new particle X t belonging
to the boundary of Ω0(t), the material is elastically
distorted and the strain energy density in the refer-
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Figure 2: Representation of the material transplant of a point
particle X t [42]. When a new point is placed at the
boundary of the spheroid, it is first subject to an elastic
distortion P from the relaxed state to satisfy the bound-
ary condition Tn = t after the deformation F is ap-
plied.

ence configuration can be written as

ψ(X t, F) =
1

det P(X t)
ψr(FP(X t)).

We refer to P as the transplant map, or more simply
as transplant. Such a tensor models the local elastic
distortion from the relaxed archetype to the reference
configuration at point X t, see Fig. 2.

While being on the boundary at time t, the point
X t belongs to the bulk of Ω0(t̄) for t̄ > t. Once the
material is deposed, here we assume that P does
not change in time. The transplant P can be also
extended to the initial reference configuration Ω0(0)
by taking P(X) = I for X ∈ Ω0(0). In this way, P is
defined in the whole the reference domain for all t,
and the energy functional becomes

Eel[φ] =
∫

Ω0

ψ(X, F) dV.

Such an operation is called material transplant. Gener-
ally speaking, the reference configuration may not be
stress-free if the transplant map P(X) is not a gradi-
ent of a deformation function φP(X), for a detailed
discussion see [18, 42]. In the following, the expli-
cit dependence of P on the point is omitted unless
necessary.

The total elastic distortion of the material can be
computed as Fe = FP, accounting for the total de-
formation from the archetype to the current con-
figuration. Within this framework, the first Piola–
Kirchhoff stress tensor reads

S =
∂ψ

∂F
− pF−T =

1
det P

∂ψr

∂Fe
PT − pF−T . (9)

During the process of deposition of the new cells
on the boundary at X t, the stress state of the newly
deposed material must satisfy the boundary condi-
tion (8). Specifically, we take

T(xt, F) = γKn ⊗ n, (10)

where xt = φt(X t).1 Finally, provided that the dens-
ity of the added point is ρ0, i.e. the same as the
archetype, we get [42]

det P = 1. (11)

In order to find the explicit expression of the trans-
plant, we observe that before cutting the spheroid
has a spherical shape. Therefore, we can assume that
P is a function of the radial coordinate only, with

P(R) = PRR(R)eR ⊗ eR + PΘΘ(R)(I − eR ⊗ eR),

where PRR and PΘΘ are (unknown) components of
the transplant map to be determined. From (11),
we immediately get PΘΘ = P−1/2

RR . We observe that
φt(X) = X is a solution of (6). Indeed, the incom-
pressibility constraint det F = 1 is satisfied and the
first Piola–Kirchhoff stress tensor coincides with the
Cauchy stress. By taking F = I in (9) we get

S = T = µPPT − pI (12)

By substituting (12) into (10) and observing that K =
−2/Rt, after a few passages we are left with the
following third-order equation

µ
(

P3
RR(Rt)− 1

)
Rt + 2γPRR(Rt) = 0. (13)

The only positive real solution of such an equation is
given by PRR(Rt) = F(Rt), where

F(Rt) =
3
√

2 (G(Rt))
2/3 − 4 3

√
3ℓcRt

62/3Rt
3
√

G(Rt)
,

G(Rt) =
√

96ℓ3
c R3

t + 81R6
t + 9R3

t ,

where ℓc is the elastocapillary length, defined as

ℓc =
γ

µ
. (14)

Summarizing, at t = T we have

PRR(R) =

{
F(R) it R ≥ R0,

1 if R < R0.

Finally, the balance equation (6) is always satisfied
thanks to the pressure variable p. Specifically, under
spherical symmetry conditions (6) reduces to

dSrR
dR

+
2(SrR − SθΘ)

R
= 0. (15)

1 According to Zurlo and Truskinovsky [39], at the time of the
deposition

T(t, xt, F) = Tp + Te,

where Tp is exactly the right-hand side of (10) and satisfies the
boundary conditions, while Te is a given tensor field accounting
for the stress state in other directions, i.e. with Ten = 0. In the
following we assume that there is no force other than the action
of the boundary condition (8), and we take Te = 0.
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Figure 3: Plots of dimensionless radial (top) and hoop (bottom) residual stresses, normalized by the shear modulus µ, as a function of
the radial position R/RT . The panels correspond to R0/RT values of 0.25 (left), 0.5 (centre), and 0.75 (right). Each curve
represents different values of the normalized capillary length ℓc/RT = 0.04, 0.08, . . . , 0.2, where ℓc = γ/µ. The direction
of increasing ℓc/RT is indicated by arrows, with darker curves representing higher values of ℓc/RT .

By substitution of (12) in (15), we can integrate with
respect to the radial coordinate from Rt to R. Recall-
ing the boundary condition (8), we get

p(t, R) =


µPRR(R)2 + 2γ

(
2
R
− 1

Rt

)
if R ≥ R0,

µ
(

1 − PRR(R0)
2
)
+ p(t, R0) if R < R0.

The distribution of the transplant map is spatially
inhomogeneous. This can give rise to a stress state
even if the surface tension is removed at the outer
boundary after the growth of the spheroid. Such a
stress state is called residual stress, and it is due by
the geometrical incompatibilities induced by surface
growth [39], similarly to what happens with volumet-
ric growth [16, 18].

Since there is no deformation induced by surface
tension, the residual stress tensor Σ can be simply
computed as

Σ = µPPT − pΣ,

where pΣ is the pressure field in the absence of sur-
face tension. From the boundary condition ΣN = 0
we get

pΣ(R) = p(T, R) +
2γ

RT
.

Therefore, the radial and hoop components of the

residual stress read

ΣRR =


4γ

(
1

RT
− 1

R

)
, if R ≥ R0,

4γ

(
1

RT
− 1

R0

)
, if R < R0,

ΣΘΘ =


2γ

(
2

RT
− 1

R

)
, if R ≥ R0,

4γ

(
1

RT
− 1

R0

)
, if R < R0.

We observe that the resulting residual stress is inde-
pendent of the material properties, but its magnitude
is proportional to the surface tension γ. Representat-
ive residual stress profiles are shown in Fig. 3. From
these plots, it is clear that the radial residual stress
vanishes at R = RT (consistent with the boundary
conditions for residual stress), remains continuous
at R = R0, and is compressive (negative) throughout
the spheroid. In contrast, the hoop residual stress is
tensile in the outer region, becomes zero at R = RT/2
(if R0 < RT/2), and is compressive in the inner re-
gion. In any case, the magnitude of the hoop residual
stress at the boundary is independent on R0 and de-
pends only on the ratio ℓc/RT . Both the radial and
the hoop stress are equal in the centre R < R0, in
agreement with several experimental results [30, 43]

Thus, the model returned the desired pattern of
residual stress, with a tensile region in the outer rim
and a compressive stress state in the inner region. In
the next section, we analyse the impact of surface
tension and growth on the opening of the spheroid
due to a radial cut.
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3 Deformation of a radially cut
tumour spheroid

In this section, we analyse the deformation of a tu-
mour spheroid following a radial incision. The exper-
iments described by [13] investigate the deformation
of both newly formed cellular aggregates and more
mature ones, with cuts applied at various stages of
growth. Many of these experiments focus on aggreg-
ates consisting of approximately 5000 cancer cells,
which initially exhibit a shape closer to a cylinder
rather than a sphere. Importantly, the observed open-
ing in newly formed spheroids upon cutting cannot
be attributed to spatially inhomogeneous growth. As
discussed previously, this conclusion is supported by
experimental evidence showing that only a thin layer
of cells at the boundary undergoes circumferential
stretch after two days [30].

We begin by presenting a simplified two-
dimensional model to describe the cutting of a re-
cently formed tumour spheroid, without considering
surface growth. After this, we extend the analysis
to a fully three-dimensional model that incorporates
growth for spheroids that have been allowed to de-
velop for several days.

3.1 A two-dimensional model of
early-stage spheroid cutting

Our goal is to understand the effects of a radial in-
cision on early-stage tumour spheroids. Differently
from Sec. 2, we first consider a reference configur-
ation where the spheroid is approximated as a cyl-
inder, which is cut radially, with the cylinder’s axis
aligned along the Z-axis. To simplify the analysis, we
assume that deformations along the Z-axis are negli-
gible, allowing us to focus solely on deformations in
the plane perpendicular to the axis.

To model the impact of a radial cut with zero thick-
ness—where no material is removed and a sharp
interface is created—we further simplify the problem
by analysing only half of the cross-section, assuming
axial symmetry throughout.

More specifically, let S0 be half of the section of
the cylinder section lying on the XY plane

S0 = {(R cos Θ, R sin Θ) ∈ R2},

with 0 < R < R0 and 0 < Θ < π. We assume that
the portion of the boundary subject to surface tension
Σγ is given

Σγ = {X = (X, Y) | Y = 0 ∩ X > R0 − L or |X| = R0},

where 0 < L < 2R0 is the length of the incision.
We apply symmetry boundary condition on the

boundary Σs = {X = (X, Y) | Y = 0 ∩ X < R0 − L},
namely {

u · eY = 0,

SeY · eX = 0.
(16)

Finally, in order to avoid rigid displacements of the
half-disk, we set

φ(0, 0) = 0. (17)

In the following, we provide an analytical estimate
of the opening length induced by surface tension,
using a simplified kinematic model.

Analytical estimate using simplified kinematics
We now show that, by restricting the set of the ad-
missible deformation fields, we are able to provide
an analytical estimate of the opening length of a disk
subject to a cut of length L = R0. The polar coordin-
ates in the current configuration are (r, θ)

We restrict the kinematics to a specific set of de-
formations: we assume that the actual polar coordin-
ates are given by [44, 45]r =

R√
α

,

θ = αΘ + (1 − α)π,
(18)

where α ∈ (0, 1] is a parameter describing the tumour
opening, with α = 1 corresponding to the unde-
formed tumour and the tumour opening increasing
as α decreases.

The transformations introduced in (18) describe
the deformation of a half-disk into a disk sector of

-1 0 1

-1

0

1

-1 0 1

-1

0

1

-1 0 1

-1

0

1

-1 0 1

-1

0

1

-1 0 1

-1

0

1

Figure 4: Representation of the “Pac-Man” deformation described by (18) for α = 1, 0.9, . . . , 0.6 from left to right. All the lengths
are rescaled with respect to the initial radius R0. The deformation is applied to the whole disk for the sake of clarity.
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the same area. By applying this deformation symmet-
rically to the entire disk, we obtain a “Pac-Man”-like
shape, as shown in Fig. 4.

The admissible deformation φα defined in (18) is
quite restrictive, but it provides enough freedom for
the system to release surface energy through elastic
deformation, neglecting the rounding of the corners
induced by surface tension [46]. We observe that for
the admissible deformations

∇φα =
dr
dR

er ⊗ eR +
r
R

dθ

dΘ
eθ ⊗ eΘ =

=
1√
α

er ⊗ eR +
√

αeθ ⊗ eΘ,
(19)

so that the deformation gradient has constant coeffi-
cients using a polar vector basis.

Thanks to (19), the elastic energy stored in the
body (1) can be written as

Eel[φα] =
πµR2

0
4

(
α +

1
α

)
; (20)

while the surface energy is given by

Es[φα] = γR0

(
1√
α
+ π

√
α

)
. (21)

In view of (20) and (21), the total energy (3) becomes

E [φα] =
πµR2

0
4

(
α +

1
α

)
+ γR0

(
1√
α
+ π

√
α

)
.

The energy minima are stationary points of the func-
tional, i.e.

d
dα

E [φα] = 0. (22)

By solving (22), we get

ℓc

R0
=

π
(
1 − α2)

2
√

α(πα − 1)
. (23)

The expression given by (23) can be inverted numeric-
ally to find α. Given the opening angle, it is possible
to compute the opening length ω of the cut cylinder
as

ω = 2u(0, R0) · eX =
2R0 sin α√

α
. (24)

A plot of the opening predicted by this single-degree-
of-freedom model is reported in Fig. 5, where we
observe an almost linear relation between ω and the
elastocapillary length ℓc.

Of course, this is a very simplified model, where
the energy depends only on a single scalar variable,
that is α. We are restricted to considering just a cut
length equal to the radius and other effects. Moreover,
the deformation close to sharp corners induced by
surface tension is neglected [46, 47]. In the following,
we compare the proposed approximation by with
numerical simulations.

Finite element approximation The problem of
spheroid cutting cannot be solved analytically if we
allow non-homogeneous deformations. Therefore,
we have to rely on numerical simulations. In what
follows, we adopt the finite element method. Spe-
cifically, the problem can be written in weak form
as

Find (u, p) such that, for all (v, q) :∫
S

S : ∇v dV −
∫

Σγ

γKv · F−T N dS+

−
∫
S

q(det F − 1)dV = 0,

(25)

where (v, q) are the test functions. Both (u, p) and
(v, q) must belong to an appropriate functional space
ensuring that the boundary conditions (16) and (17)
are satisfied. We do not enter into the mathematical
details, we refer to [48, 49] for a detailed discussion.

The half-disk domain, S , is discretized using a tri-
angular mesh. Since surface tension induces singular
stresses near sharp angles [46], the mesh is refined
around the vertices of the cut to improve the accur-
acy of the numerical solution. We employ a mixed
formulation with Taylor-Hood elements, discretizing
the displacement and pressure fields using piecewise
quadratic and linear functions, respectively. This
choice ensures the well-posedness of the discrete
problem and prevents the emergence of spurious
pressure modes [50].

The implementation is carried out using the FEn-
iCS library. Surface tension is incrementally increased
by a step size ∆γ. The problem (25) is solved using
Newton’s method, with the solution from γ = γk
serving as the initial guess for the subsequent New-
ton iteration at γ = γk+1 = γk + ∆γ. The increment

Figure 5: Opening length ω as a function of the surface ten-
sion γ for a radial cut of length R0 of a disk. The
purple curve denote the numerical prediction, while
the green curve is the result of the single-degree-of-
freedom model of Eqs. (23)-(24). All the quantities
are non-dimensionalised with respect to the radius R0
and the shear modulus µ.
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Figure 6: Morphological diagram showing the current config-
uration of the 2D model of the cut spheroid for
ℓc/R0 = 0.05, 0.1, 0.15, 0.2 and L/R0 = 0.8, 1, 1.2.
The colour bar denotes the norm of the displacement u
non-dimensionalised with respect to R0.

Figure 7: Plot of the opening ω of the cut disk as a function
of the elastocapillary length (top) and of the incision
length (bottom). All lengths are non-dimensionalised
with respect to R0. The value of L/R0 in the top
panel are 0.8, 0.9, . . . , 1.3, while the values of ℓc/R0
in the bottom panel are 0.05, 0.1, 0.15, 0.2. In the
bottom panel we also show the experimental data for
a spheroid with 5000 cells at the beginning of the
experiment and cut after two days.

∆γ is automatically adjusted if the Newton method
fails to converge or converges in fewer than three
iterations. This algorithm is implemented using the
library BiFEniCS [51].

Results of the two-dimensional simulations In
Fig. 5, we compare the theoretical predictions of the
single-degree-of-freedom analytical model given by
(23)-(24) with the outcomes of the numerical simula-
tions (with an incision length of L = R0).

We observe that for moderate values of the di-
mensionless parameter ℓc/Ro there is a very good
agreement between the analytical and the numerical
model. When ℓc/R0 > 1.5 the discrepancy between
the two models starts to be more relevant. This can
be due to the non-homogeneity of the deformations
close to the corners, which is particularly evident
for large values of ℓc/R0. In Fig. 6, we present
the current configurations of the cut sphere for vari-
ous values of the incision length L and of the ratio
ℓc/R0. A quantitative plot of the different opening
length observed as we change the parameters of the
model is proposed in Fig. 7, together with a com-
parison with the experimental results of Guillaume
et al. (see [13]) for a newly created spheroid (i.e.
without growth). We observe that surface tension
has a strong influence on the opening length (i.e. as
we vary ℓc/R0 = γ/µR0). Conversely, the incision
depth as a smaller influence on the resulting deform-
ations. From the experimental data, we can estimate
that ℓc/R0 is around 0.15, even though there is some
variance in the experimental results. Given that the
shear modulus is approximately 1 kPa and the radius

Figure 8: Representation of the full spheroid, with δ indicating
the thickness of the cut. In the numerical simula-
tions, only a quarter of the cut spheroid, as shown in
the inset, is modelled. The blue surface in the inset
corresponds to the region with symmetry boundary
conditions, while the orange surface denotes the free
boundary subject to surface tension. The mesh is re-
fined near the cut edges to improve accuracy in these
regions.
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Figure 9: Current configuration of a cut spheroid after growth, with RT = 2R0. From left to right, ℓc/RT = 0.05, 0.1, 0.15, 0.2. The
colour-bar denotes ∥u∥/RT . On the top half of the spheroid, we denote in purple the initial region occupied by the spheroid
at t = 0, while the green part indicates the grown region.

is around 450 µm [13], the surface tension acting on
the spheroid is estimated to be about 68 mN/m.

In the experiments reported in [13], spheroids ob-
served for growth have a reduced initial cell count.
This has important consequences for the shape of the
spheroid, as it retains a more spherical form. Con-
sequently, we must abandon the assumption of cyl-
indrical symmetry to model spheroid incision after
growth, necessitating three-dimensional simulations
to replicate these experiments.

3.2 Simulations of three-dimensional
spheroid cutting

In the paper [13], the authors provides data on the
opening lengths observed after cutting spheroids that
had been cultured for six days, reporting a doubling
of their initial radius. Therefore, in what follows we
focus on the case of RT = 2R0 in the simulations
with growth. These spheroids are characterized by
an initial cell count of 500, with a final radius RT ∼
450µm at T = 6 days.

Implementation The transition from 2D to 3D geo-
metries introduces additional computational chal-
lenges. While the weak form remains consistent with
that in (25), the issue arises at the cut in the middle
of the spheroid. Here, the cut spans the entire line,
leading to a blow-up of the stress and pressure fields
due to the infinite curvature at the tip of the cut [46,
47]. These singularities induce large deformations
near the cut tip, which can create difficulties in the
convergence of Newton’s algorithm. To address this
issue and model the mass depletion during the cut-
ting process, we represent the cut as a crack with a
finite thickness 2δ, as illustrated in Fig. 8. Specifically,
in the following, we use a value of 0.05RT for δ.

Results of the three-dimensional simulations In
Fig. 9, we show the current configuration of a grown
spheroid following the cut for different values of
ℓc/RT . We observe, as for the two-dimensional simu-

Figure 10: Plot of the opening ω of the cut sphere as a function
of the elastocapillary length (top) and of the incision
length (bottom). In the top panel, green curves in-
dicate the opening of a spheroid after growth, in blue
we show the results of a cut sphere without growth
(R0 = RT). All lengths are non-dimensionalised
with respect to RT . The value of L/RT in the
top panel are 0.8, 0.9, . . . , 1.3, while the values of
ℓc/RT in the bottom panel are 0.05, 0.1, 0.15, 0.2.
In the bottom panel we also show the experimental
data for a spheroid with 500 cells at the beginning of
the experiment and cut after six days, from [13].

lations, an increment in the tumour opening as the
surface tension increases. The sharp edges of the cut
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Figure 11: Superposition of the experimental image of a cut
spheroid after 6 days of growth (initial number of
cells: 500; image adapted from [13]) with a cor-
responding numerical simulation (ℓc/RT = 0.13,
L/RT = 1.1). The purple lines highlight the open-
ing of the cut in the region already existing at t = 0,
showing an opening angle of approximately 23◦ (in-
dicated with a in the figure). The green lines repres-
ent the opening of the grown region of the spheroid,
where the opening angle b increases to around 40◦.

are rounded by the effect of surface tension [46].
The residual stresses accumulated in the spheroid

during surface growth nearly double the tumour’s
opening compared to simulations without growth,
as illustrated in Fig.10 (top). Notably, the simula-
tion results without surface growth (blue lines) are
comparable to those shown in Fig.7 for a circular
domain, suggesting that the domain geometry plays
a minor role in the mechanics of tumour opening
post-incision.

A comparison with the experimental measure-
ments of the opening length from Guillaume et al.
[13] is shown in Fig. 10 (bottom). We observe a nearly
linear relationship between the incision depth and
the measured opening, although the slope of the
curves is relatively small. This indicates that incision
depth plays a minor role in the overall quantitat-
ive opening of the tumour. Instead, surface tension
seems to have a more dominant influence. From the
experimental results, we estimate the elastocapillary
length to be between 0.1RT and 0.15RT . Given that
the shear modulus is approximately 1 kPa and the
radius is around 450, µm [13], the surface tension
acting on the spheroid is estimated to be in the range
of 45 mN/m < γ < 68 mN/m. This range closely
aligns with the estimates reported by Riccobelli and
Bevilacqua [31], who estimated γ ∼ 100 mN/m us-
ing a different methodology.

Interestingly, we observe that the residual stress
also influences the shape of the cut: in the grown re-

gion, the opening of the tumour is more pronounced,
as shown in Fig. 11. This change in the opening is
absent if the spheroid is cut just after its creation,
see Fig 1 (right). In Fig. 11, we remark that there is
a strong agreement between the shape predicted by
the numerical simulations and the one observed in
the experiments.

4 Discussion and concluding
remarks

Despite the large amount of literature on the mech-
anics of solid tumours, even basic aspects of cell
proliferation and solid stress development are poorly
understood. The theoretical framework of this paper
provides a new perspective on these fundamental
issues. As discussed in [31], we argue that surface
tension generated by cell-cell adhesion and active
contractility plays a crucial role in determining the
stress state and guiding cell proliferation in the early
stages of tumour growth.

We have focused our attention on solid tumour
spheroids, proposing a mathematical model of tu-
mour surface accretion based on the theory of Zurlo
and Truskinovsky [39–41]. Surface tension elastically
deforms newly produced cells on the free surface, res-
ulting into a compression of the cells along the radial
direction. This process generates an inhomogeneous
prestretch and a geometrically incompatible relaxed
state. The pattern of residual stress predicted by the
model resembles that observed in real tumours [1,
8]. The model predicts a structure of the spheroid
composed of an inner core subject to isotropic com-
pression and an outer rim where cells are radially
compressed and circumferentially elongated, consist-
ently with experimental observations, see Fig. 5 in
[43].

To validate our theoretical framework, we have
investigated the deformation of spheroids following
radial incisions. In [13], different opening length
are observed depending on the spheroid’s age. Tu-
mour spheroids typically requires two days to self-
aggregate [30]. After this period, the bulk of the
spheroid shows negligible residual stress. Instead,
the primary source of stress within the spheroid can
be attributed to the tissue surface tension, resulting
in a pressure-like stress state in bulk [30, 31]. We have
shown that the radial cut generates an opening of the
spheroid driven by surface tension, even in the ab-
sence of residual stress. We derived a simplified ana-
lytical approximation by means of classical universal
solutions of nonlinear elasticity, which provides an
estimation of tumour opening. However, this model
neglects the non-uniform deformations arising from
singular stresses at the cut edges, which are caused

10 Submitted — Under review



Elastocapillarity-driven surface growth in tumour spheroids

by the infinite curvature of the free surface in the
reference configuration.

To overcome these limitations, we have performed
finite element simulations. The results of these sim-
ulations are reported in Figs. 5-7. We have shown
that, despite its simplicity, our analytical approxim-
ation is in good agreement with the results of the
numerical simulations. We have also included the
effect of growth and the related mechanical stress in
older spheroids. The results of the simulations for
growing spheroids are reported in Figs. 9-11. The
morphology predicted by the numerical simulations
strikingly matches with the experimental evidences.
The numerical simulations in early and grown spher-
oids are tested with the quantitative data provided
by Guillaume et al. [13]. Both cases indicate that
the surface tension acting on the spheroids is about
60 mN/m, similarly to previous estimates [31].

The results of this work highlight the key role that
surface tension and elasticity play in the growth of
solid tumours. The proposed model correctly cap-
tures both the proliferation pattern within the tu-
mour and the development of mechanical stress in
the early stages of tumour progression. These key
features play a crucial role in the subsequent vascu-
larization of the tumour and possible tissue invasion
in cancer. Open problems related to this research are
correlated with mechano-transduction phenomena
in solid tumours. It is well-known that mechanical
stress can inhibit growth, and a mathematical frame-
work to include mechanical feedback in volumetric
growth law is quite established. Its extension to
surface growth is non-trivial. Other problems in-
volve extending the proposed model to compressible
constitutive law. Indeed, the poroelastic nature of
the spheroid can induce volumetric deformations of
the solid matrix, and adding a slight compressibility
would improve the model accuracy. The compressibil-
ity of the spheroid can induce discrepancies between
the reference and the current configurations, leading
to a more complex reconstruction of the surface accre-
tion process, as discussed in [41]. In this respect, also
a coupled theory between surface and volumetric
growth in biological tissues is needed.
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