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Abstract

This study addresses the modelling of elastic bodies, particularly when the relaxed config-
uration is unknown or non-existent. We adopt the theory of initially stressed materials, incor-
porating the deformation gradient and stress state of the reference configuration (initial stress
tensor) into the response function. We show that for the theory to be applicable, the response
function of the relaxed material is invertible up to an element of the material symmetry group.
Additionally, we establish that commonly imposed constitutive restrictions, namely the initial
stress compatibility condition and initial stress reference independence, naturally arise when
assuming an initial stress generated solely from elastic distortion. The paper delves into mod-
elling aspects concerning incompressible materials, showcasing the expressibility of strain en-
ergy density as a function of the deviatoric part of the initial stress tensor and the isochoric
part of the deformation gradient. This not only reduces the number of independent invariants
in the energy functional, but also enhances numerical robustness in finite element simulations.
The findings of this research hold significant implications for modelling materials with initial
stress, extending potential applications to areas such as mechanobiology, soft robotics, and 4D
printing.

1 Introduction

In the modelling of solid materials, the elastic strain is typically defined with respect to a chosen
configuration known as the reference configuration. While it is commonly selected as a configu-
ration free of mechanical stress, certain situations necessitate adopting a reference configuration
that exhibits a non-zero stress state. The stress distribution in this reference configuration is called
initial stress.

This circumstance is particularly prevalent in biological tissues, which are frequently subject
to external mechanical force (e.g. the blood pressure on vessel walls and on the heart chambers)
and their stress free configuration is not easily observable [3]. An initial stress generated by the
imposition of external loads is also known as pre-stress [41]. Pre-stress magnitude and distribution
can be designed to enhance the mechanical response of materials, as seen in pre-stressed concrete
structures [33].

Moreover, materials may store mechanical stress even in the absence of external forces. In such
a case the stress state is referred to as residual stress [18]. In general, residual stresses are generated
by geometrical incompatibilities at the microstructural level that necessitate the introduction of
elastic distortions to maintain the continuity of the body [13]. To provide some examples, the
formation of residual stress in biological materials is driven by active processes, e.g. growth, that
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generate the incompatibility [46, 6]. Residual stresses may also arise in engineering materials as
well, in this case as a result of their manufacturing process [49, 51, 31, 36, 8].

Regardless of its origin, a suitable design of the initial stress distribution can be exploited to
enhance the resistance of the material to the deformation, e.g. in arteries [5, 26], or to control the
shape morphing of the object [7, 43], with possible applications to soft robotics [1] and 4D printing
[47, 52].

A successful approach to modelling initially stressed material is based on the introduction of
a virtual relaxed state of the body [44]. The underlying idea is based on a multiplicative decom-
position of the deformation gradient F = FeG, where G maps the reference configuration to a
relaxed state while Fe accounts for the local elastic distortion. In general, G may not be the gradi-
ent of a deformation. This introduces incompatibilities that generate the initial stress within the
body. Despite the huge success of this theory, the main drawback is that G must be constitutively
provided. Experimental measurements of G usually rely on cutting the body to release the me-
chanical stress and reveal its relaxed state. Clearly, such a destructive technique is not applicable
in several scenarios, such as the in-vivo estimation of the stress state of a biological tissue.

However, recent scientific developments have made it possible to measure the initial stress
state of an object using non destructive methods, such as acoustoelastic techniques [32, 50]. Based
on these progresses, it is more effective to describe the material behaviour as a function of the
initial stress tensor and of the deformation gradient. Such an approach is known as the theory
of initially stressed materials. The first attempts in this direction date back to the seminal works
of Hoger and colleagues [19, 21, 22, 20, 28, 29, 30]. Further extensions have been proposed in
recent years [45, 35, 23, 37, 10, 27]. Specifically, Shams et al. [45] proposed a constitutive law for a
hyperelastic and isotropic solid based on ten invariants involving the elastic deformation and the
initial stress tensor.

More recently, several constitutive restrictions have been proposed to guide the construction
of physically admissible energy functions, such as the initial stress compatibility and the initial stress
reference independence conditions [14, 15]. Despite these advances, a unified theory for constitutive
modelling of initially stressed solids remains a debated topic [40] and it is still not clear which
constitutive laws are admissible. Furthermore, the finite element simulations of incompressible
initially stressed solids exhibit numerical issues, as highlighted for example in [7]. These prob-
lems are related to locking phenomena that frequently affect the simulation of incompressible
elastic media (see chapter 15 of [9]). A common approach to circumvent these drawbacks in con-
ventional hyperelasticity is to exploit a decomposition of the stress tensors into a volumetric and
a deviatoric part [4, 25].

Based on the aforementioned aspects, the purpose of this paper is two-fold:

• derive a comprehensive theory of initially stressed materials where the initial stress is gen-
erated solely by an elastic distortion,

• enhance current description of incompressible initially stressed media exploiting the volumetric-
deviatoric splitting.

The paper is organised as follows: in Section 2, we review the basic theory of initially stressed
materials, deriving it starting by solely assuming that the initial stress is generated by an elastic
distortion. Specifically, we show that commonly enforced restrictions naturally follow from this
assumption. In Section 3, we provide a representation formula for the strain energy density of an
isotropic initially stressed material. In Section 4 we study the incompressible limit of the proposed
theoretical framework. As an application, the bending of an initially stressed block is analysed in
Section 5.

2 Initially stressed materials

In the following, we introduce the essential notation and theory to describe the response of
initially-stressed materials by exploiting the theoretical framework developed by Shams et al.
[45].
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We consider a reference configuration Ω0 ⊂ E3, with X ∈ Ω0 representing a material position
vector. The deformation field is denoted by the map Ø : Ω0 → E3, where x = Ø(X) is the current
position vector. The deformation gradient tensor yields F = Grad Ø.

Let T and ψ be the Cauchy stress tensor and the strain energy density per unit reference vol-
ume, respectively. We recall that the first Piola-Kirchhoff stress tensors S is related to T by the
formula

T = J−1SFT , (1)

where J = detF.
When modelling initially stressed materials, it is usually assumed that both the strain energy

density and the Cauchy stress tensor depend on the initial stress tensor Σ and the deformation
gradient, that is

ψ = ψ̂(F, Σ) and T = T̂(F, Σ). (2)

Before proceeding into this direction, we present a simple one-dimensional example to illustrate
the procedure.

2.1 A 0D illustrative example: an initially stressed elastic spring

We consider an elastic spring in its relaxed state. In this configuration, its length L coincides with
its rest length. We can write its constitutive response out of this stress free state as simply as

F = f (λ) , (3)

where F is the elastic force generated by the spring, λ = ℓ/L is the stretch, and ℓ is the current
length of the spring (see Fig. 1). We further assume f to be invertible and specifically take a linear
function f (λ) = −kL(λ − 1), where k is the elastic constant.

We now consider a different configuration of the spring with length L1 ̸= L. According to
(3), an elastic force τ1 = f (e1), with e1 = L1/L, is associated with this configuration. Our aim
is to describe the response of the spring out of this stressed configuration. Accordingly, we shall
introduce a constitutive function f1 that depends exclusively on the stretch λ1 = ℓ/L1 and on the
force τ1. Since λ = e1λ1 = f−1(τ1)λ1, we have

F = f1(λ1, τ1) = f ( f−1(τ1)λ1). (4)

Similarly, we can take another configuration with length L2 ̸= L1. By following the same proce-
dure used above, we can build a constitutive function f2 out of this configuration as follows

F = f2(λ2, τ2) = f ( f−1(τ2)λ2). (5)

where τ2 = f (e2), with e2 = L2/L, and the stretch λ2 = ℓ/L2.
At this point, we observe that f1 and f2 defined in (4) and (5) are merely the same response

function that is evaluated for different values. To support this, we introduce h = L2/L1 = λ1λ−1
2 ,

so it can be easily shown that

F = f1(λ2h, τ1) = f2(λ2, τ2) = f1(λ2, τ2) .

Moreover, since τ2 = f1(h, τ1), we get

f1(λ2h, τ1) = f1(λ2, f1(h, τ1)) . (6)

This last equation is the one-dimensional equivalent of the initial stress reference independence con-
dition proposed in [15] for initially-stressed materials. A key element in this derivation is the
assumption of a common relaxed state of the initially stressed spring. Although such an example
is an over-simplification of a generic multidimensional problem, it enlightens two key assump-
tions

1. The invertibility of the response function f .

2. The fact that the initial stress state is generated by an elastic distortion.

We now extend this considerations to a three-dimensional elastic body with initial stress to study
the general structure of the problem.
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Figure 1: A scheme of the example of section 2.1.

2.2 Initially-stressed three-dimensional elastic bodies: fundamental assump-
tions

We consider an hyperelastic material such that the process of formation of the mechanical stress
is purely elastic. The following notation will be used thereafter

• Lin denotes the set of linear second order tensors.

• Lin+ denotes the set of all the F ∈ Lin such that detF > 0.

• Sym is the set of all the symmetric second order tensors.

• Orth and Orth+ are the sets of the orthogonal matrices and of rotations, respectively.

2.2.1 Invertibility of the response function

As pursued in Sec. 2.1, we start from the well-known theory of hyperelastic materials free of
initial stresses. By denoting with Ω0 a given relaxed reference configuration, the constitutive law
takes the usual form T0(Fe), where Fe ∈ Lin+ is an elastic distortion from Ω0 to the current state
of the material (see Fig. 2). The strain energy density associated with T0(Fe) is ψ0(Fe).

For each stress state Σ ∈ Sym, we would like to identify an elastic distortion PΣ such that
T0(PΣ) = Σ. The existence of such a distortion PΣ has been addressed in [42] provided that the
strain energy density is non degenerate, that is{

ψ0(Fe) → +∞ as |Fe|+ |F−1
e |+ detFe → +∞,

ψ0(Fe) → +∞ as detFe → 0.

Such an assumption requires the strain energy density to blow up when the body is locally subject
to an extreme deformation (e.g. one of the principal stretches goes to infinity). However, the
simple existence of PΣ is not enough, as we show next.

Compared with the 0D example, we cannot have an exact inverse of T0 in this 3D case. Indeed,
for any Q ∈ G, where G ⊂ Orth+ is the material symmetry group, we have

T0(FeQ) = T0(Fe) ,

so that T0 is not injective, in general. Nevertheless, it is possible to introduce a relation of equiva-
lence ∼ in Lin+, such that

F
(1)
e ∼ F

(1)
e ⇔ ∃Q ∈ G | F(1)e = F

(2)
e Q .
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Figure 2: Change of reference configuration for initially stressed materials.

We further define the quotient set F = Lin+ / ∼ composed of the equivalence classes [Fe] =
{A ∈ Lin+ | A ∼ Fe} induced by ∼, namely

F = {[Fe], Fe ∈ Lin+} .

We can now conveniently construct an alternative response function TF , as follows

TF : F → Sym,
TF ([Fe]) := T0(Fe),

which is, of course, well defined since T0(A) is independent on the choice of A ∈ [Fe]. Differently
form T0, the newly introduced response function TF can be bijective under particular circum-
stances.

Remark 2.1. Requiring the invertibility of the response function over the set F is very restrictive. Con-
sider, for instance, an incompressible material whose strain energy density is given by

ψ0(Fe) = µ(
√

λ1 +
√

λ2 +
√

λ3 − 3),

Such an energy is representative of material softening and, therefore, does not lead to an injective expression
of the principal stresses. We show this fact by taking a uniaxial deformation in plane strain conditions, such
that Fe = diag(λ, λ−1, 1). The principal stress along the axial direction can be computed as t1(λ) =
∂ψ0(Fe)/∂λ, resulting in

t1(λ) = µ
(λ − 1)
2λ3/2 ,

which is clearly not bijective. This behaviour is linked with the existence of multiple deformations
associated with the same stress response, but having different strain energy. For instance, we have

t1 (2) = t1

(
3 +

√
5
)

,

but

ψ0(Fe)|λ=2 =
3
√

2
2

µ < 3

√
10 +

√
2

2
µ = ψ0(Fe)|λ=3+

√
5 .
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In order to construct a robust theory, in the following we require TF to be bijective.
This discussion simplifies a lot if we assume an isotropic material response, that is G = Orth+.

Accordingly, using the polar decomposition theorem Fe = VR, with V being a symmetric positive
definite tensor and R ∈ Orth+, we have

T0(Fe) = T0(V).

Here, V can be seen as the representative of its equivalence class [Fe]. For isotropic materials, the
principal directions of T0 and of V are the same, therefore

tj = f j(λ1, λ2, λ3), j ∈ {1, 2, 3}

where tj and λj are the principal values of T and V, respectively. Consequently, the requirement
that TF be invertible, here reduces to the invertibility of the three scalar functions tj.

2.2.2 Elastic initial stress

We now consider an initially stressed material and assume that the initial stress is generated by
an elastic distortion only. In other words, we assume the strain energy ψ0(Fe) and ψ(F, Σ) to be
materially isomorphic [38, 11, 12] or, by using the nomenclature introduced by Epstein, we take
ψ0(Fe) as the archetype of the material. Operationally, given an initial stress Σ at a material point
X, we define its related elastic distortion as

P : Sym → Lin+ ,

with
P = CF ◦ T−1

F
PΣ = P(Σ)

where CF is the choice function that associate to any set [P] ∈ F one of its elements1. Clearly, by
definition

T0(P(Σ)) = Σ. (7)

Consequently, by the definition of material isomorphism, we get

ψ̂(F, Σ) =
1

detP(Σ)
ψ0(FP(Σ)). (8)

Moreover, by denoting Fe = FPΣ, we get

T̂(F, Σ) =
1

detFdetP(Σ)
∂ψ0

∂Fe

∣∣∣∣
Fe=FP(Σ)

P(Σ)TFT = T0(FP(Σ)). (9)

2.3 Initially-stressed materials: properties of the constitutive law

From equations (8) and (9), we can immediately retrieve two constitutive restrictions that are
usually enforced as fundamental assumptions in modelling initially-stressed materials.

2.3.1 The initial stress compatibility condition

By taking F = I in (9) we trivially get

T̂(I, Σ) = T0(P(Σ)) = Σ. (10)

Therefore, in this equation must hold for all Σ belonging to Sym. Such a property, is referred
to as initial stress compatibility condition [45, 14].

1The existence of such a function is guaranteed by the axiom of choice.
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2.3.2 The initial stress reference independence

A much discussed and open issue is related to the properties of (2) while making a change of ref-
erence configuration. According to [14, 15], this operation provide a constitutive restriction called
initial stress reference independence (ISRI). However, such a restriction has received some criticism,
e.g. [40], mainly because it is seen as a condition that unnecessarily restricts the admissible consti-
tutive laws of initially-stressed materials. To clarify this aspect, we show here that ISRI is a mere
consequence of the assumptions we made in Section 2.2.

Let Ω̃0 a different reference configuration than Ω0, with ¸ : Ω0 → Ω̃0 indicating the map
between these two reference configurations. We also introduce H = Grad ¸ and denote with F̃ the
gradient of the deformation field Ø̃ : Ω̃0 → Ω. In addition, T̃ refers to the response function at a
material point X̃ = ¸(X). By following the same procedure as in Section 2.2.2, we find

T̃(F̃, Σ̃) = T0(F̃P(Σ̃)) = T̂(F̃, Σ̃),

so that T̃ = T̂, namely T̃ is independent of the specific choice of the reference configuration. By further
observing that Σ̃ = T̂(H, Σ), we can write

T̂(F, Σ) = T̂(F̃, Σ̃) = T̂(F̃, T̂(H, Σ)).

and, using F = F̃H together with the arbitrariness of Ω̃0 we finally get

T̂(F̃H, Σ) = T̂(F̃, T̂(H, Σ)) ∀F̃, H ∈ Lin+, ∀Σ ∈ Sym,

which is none other than ISRI 2.

3 Structure of the energy density for isotropic initially-stressed
hyperelastic materials

The goal of this section is deriving the general structure of the energy density for isotropic initially-
stressed hyperelastic materials. To do so, we first recall the main properties of isotropic materials.
A material is said to be isotropic if the material symmetry group of the archetype is the whole
group of rotations, namely

T0(FeR) = T0(Fe), ∀Fe ∈ Lin+, R ∈ Orth+ .

By referring to Fig 2, the energy density of an isotropic, hyperelastic, material with respect to its
relaxed state is usually given in terms of the left Cauchy-Green tensor Be = FeF

T
e or, equivalently,

in terms of the right Cauchy-Green tensor Ce = FT
e Fe, as follows

f (Be) = f (Ce) := ψ0(Fe) .

More specifically, thanks to the representation theorem of isotropic functions (see [17], for in-
stance), we can write

ψ0(Fe) = g(tr(Be), I I(Be), det(Be)) = g(tr(Ce), I I(Ce), det(Ce)), (11)

where (tr(Be), I I(Be), det(Be)) is the set of scalar invariants of Be, collectively denoted with IBe ,
while (tr(Ce), I I(Ce), det(Ce)) is the set of scalar invariants of Ce, collectively denoted with ICe .
We recall that it holds IBe = ICe , being the expression of the second invariant

I I(Be) =
tr(Be)2 − tr(B2

e)

2
.

Since our objective is to write (11) with respect to an initially-stressed reference configuration,
say Ω0 in Fig. 2, we shall express its dependence upon B = FFT (or C = FTF) and Σ. To proceed

2According to [16], the assumption of purely elastic initial stress may not be strictly necessary to prove the validity of
ISRI. Nevertheless, we take this particular condition as representative of many practical applications.

7



in this direction, we first notice that, since the response function TF is invertible by assumption,
then TF is also semi-invertible [48]. Consequently, there exists some function β j, with j ∈ {0, 1, 2}
such that

Be = β0(IT)I+ β1(IT)T+ β2(IT)T2, (12)

where IT is the set of invariants of T. In particular, by taking F = I in (13) and by noticing that
Be = FPPTFT , we get

PPT = β0(IΣ)I+ β1(IΣ)Σ+ β2(IΣ)Σ2, (13)

where IΣ = (K1, K2, K3) is the set of invariants of Σ, i.e.

K1 = trΣ, K2 = I I(Σ), K3 = detΣ.

By using (12), (13), and after some manipulations, we have

tr(Be) = β0 I1 + β1 I4 + β2 I6 , (14)

tr(B2
e) = β2

0(I2
1 − 2I2) + β2

1 tr(ΣCΣC) + β2
2 tr(Σ2CΣ2C)

+2β0β1 I5 + 2β0β2 I7 + 2β1β2 tr(ΣCΣ2C) ,
(15)

det(Be) = I3 det(PPT) , (16)

where scalars I1, I2, . . . , I7 are

I1 = tr(B) = tr(C) , I2 = I I(B) = I I(C) , I3 = det(B) ,

I4 = tr(ΣC) , I5 = tr(ΣC2) , I6 = tr(Σ2C) , I7 = tr(Σ2C2) .
(17)

By noticing that tr(ΣCΣC), tr(Σ2CΣ2C), and tr(ΣCΣ2C) appearing in (15) can be obtained in
terms of the invariants listed in (17) using the Cayley-Hamilton theorem (see [45]), we can write

tr(Be) = h1(I1, I4, I6, IΣ) and I I(Be) = h2(I1, I2, . . . , I7, IΣ) .

Moreover, since det(PPT) can be expressed in terms of IΣ, as reported in Appendix A for the sake
of brevity, we have

det(Be) = I3h3(IΣ) .

Therefore, we have shown that the strain energy density of initially-stressed hyperelastic mate-
rials simply depends on a set of independent invariants I1, I2, . . . , I7 and IΣ. To sum up, we are
able to write the general expression of ψ̂(F, Σ) as

ψ̂(F, Σ) = g(h1(I1, I4, I6, IΣ), h2(I1, I2, . . . , I7, IΣ), I3h3(IΣ)).

We remark that h1, h2, and h3 are not arbitrarily chosen but arise from (14)-(16) and the computa-
tions shown in Appendix A.

In the following, we specialize such a constitutive description to the case of incompressible
materials.

4 The incompressible limit

4.1 Deviatoric–volumetric splitting of the stress tensors

A material is said to be incompressible if it cannot undergo deformations which result in local
volume changes. Accordingly, the following condition holds

J = detF = 1 , (18)

usually known as the incompressible constraint. We also introduce the deviatoric and volumetric
part of the of the Cauchy stress tensor T as

Tv =
trT

3
I and Td = T− Tv , (19)
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where the quantity
p = −1/3 trT , (20)

can be identified as a hydrostatic pressure. While Td shall be constitutively provided, the pressure
p is a reactive term that can be regarded as a Lagrange multiplier enforcing the incompressibility
constraint (18), in a sense that will be clarified later.

In the incompressible limit, the pressure expends no power during motion [17]. To see this,
we introduce the spatial velocity v and its gradient L = grad v, where grad and div are the spatial
gradient and spatial divergence operator, respectively. By denoting with D the symmetric part
of L, and by recalling that the expended power density can be computed as (Tv + Td) : D, we
obtain, for the volumetric part,

Tv : D = −pI : D = −p div v = 0 ,

where we have used the fact that the incompressibility constraint (18) implies div v = 0 [17].
Consequently, the pressure does not produce any work during motion and so cannot contribute
to the elastic strain energy of an incompressible body.

Focusing now on initially-stressed incompressible materials, the volumetric/deviatoric split-
ting (19) also applies to the initial stress Σ, the latter being the stress tensor in the undeformed
reference configuration, i.e. Σ = T|F=I. In this way, we can identify with Σd and Σv the deviatoric
and volumetric part of Σ, respectively as

Σv =
1
3
(trΣ)I and Σd = Σ− Σv . (21)

By specializing the reasoning on T to Σ, if we assume the initial stress be generated by elastic
distortion, its volumetric part Σv does not contribute to the elastic energy. Accordingly, we take
the strain energy density with respect to the initially-stressed configuration to be a function of the
deviatoric part of Σ and of the isochoric part of the deformation gradient F = J−1/3F, that is

ψ = ψ(F, Σd) . (22)

One may observe that taking ψ as a function of J−1/3F may seem useless since J = 1. However,
such a choice has two motivations.

1. The first one is of theoretical nature: if we consider the Piola-Kirchhoff stress tensor S, its
deviatoric and volumetric parts read, respectively as

Sd = JTdF
−T and Sv = JTvF

−T ,

which, can also be expressed in terms of (22) as follows [24]

Sd =
∂ψ

∂F
and Sdij =

∂ψ

Fij
. (23)

Clearly, while such an identification holds for ψ(F, Σd), it is not true for a strain energy
function in the form ψ̂(F, Σ). According to (23), we can write

S = Sd + Sv =
∂ψ

∂F
− pJF−T ,

thus showing that the introduction of F allows us to separate volumetric and the isochoric
part of the stress tensors. This will be useful in the following.

2. The second reason is of numerical nature. When using the finite element method, it has
been shown that the volumetric-deviatoric splitting of the stress tensor of the form (21) re-
sults into a more stable numerical formulation that reduces locking effects in incompressible
materials. We will show that using (22) improves the performances of the numerical algo-
rithms for incompressible initially-stressed materials as well.
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4.2 Isotropic incompressible materials

By following closely the reasoning of Section 3, it is possible to write the energy density of an
incompressible and isotropic initially-stressed material as a function of a finite set of scalar in-
variants. Specifically, by starting with a general strain energy in the form (22) along with the
assumption of material isotropy, the resulting set of independent invariants yields

Ī1, Ī2, Ī4, Ī5, Ī6, Ī7, K2, K3 , (24)

where Ī1, Ī2, . . . , Ī7 read

Ī1 = J−2/3 I1 , Ī2 = J−4/3 I2 , Ī4 = J−2/3 tr(ΣdC) ,

Ī5 = J−4/3 tr(ΣdC
2) , Ī6 = J−2/3 tr(Σ2

dC) , Ī7 = J−4/3 tr(Σ2
dC

2) .
(25)

while K2 and K3 are the principal invariants of Σd, i.e.

K2 = I I(Σd) = −
trΣ2

d
2

and K3 = detΣd . (26)

Compared with previous models (see [45, 14] for instance), such a formulation allows us to
reduce the number of independent invariant by one since K1 = trΣd is zero by construction. To
provide an example, we now derive the expression of the strain energy density for an incompress-
ible initially-stressed neo-Hookean material using the set of invariants (24).

4.3 Incompressible initially-stressed neo-Hookean materials

To start with, we consider the usual strain energy density of a neo-Hookean material with respect
to the stress-free state depicted in Fig. 2

ψ0(Fe) =
µ

2
(J−2/3

e trBe − 3) , (27)

where Je = detFe. The resulting Piola-Kirchhoff stress is

S =
∂ψ0

∂Fe
PT − pF−T = µJ−2/3

e

(
Fe −

1
3
(trBe)F

−T
e

)
PT − pF−T .

By using (1) along with the condition Je = 1, the Cauchy stress tensor results

T = µ

(
FeF

T
e − 1

3
(trBe)I

)
− pI ,

so that its deviatoric and the volumetric parts yield

Td = µ

(
FeF

T
e − 1

3
(trBe)I

)
, Tv = −pI.

To get the expression of Σ in the configuration Ω0, we enforce the compatibility condition (10),
thus getting

Σ = T0(I) = µ

(
A− 1

3
(trA)I

)
− pΣI, (28)

where A = PPT while pΣ is the initial hydrostatic pressure. By applying the volumetric-deviatoric
splitting to the initial stress to, we get

Σd = µ

(
A− 1

3
(trA)I

)
, (29)

Σv = −pΣI. (30)

thus providing the initial stress as function of the elastic distortion A.
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To derive the strain energy density in the form (22), we shall invert (29) and express A as a
function of the initial stress. Since A is symmetric, we can project (29) along its principal direc-
tions, which coincides with the principal directions of Σd. By denoting with σj (j = 1, 2, 3) the
eigenvalues of Σd, and with αj (j = 1, 2, 3) the eigenvalues of A, (29) rewrites as

σ1 = µ

(
α1 −

α1 + α2 + α3

3

)
,

σ2 = µ

(
α2 −

α1 + α2 + α3

3

)
,

σ3 = µ

(
α3 −

α1 + α2 + α3

3

)
.

(31)

Since A is positive definite and detA = (detP)2 = 1, so we have αj > 0 and

α1α2α3 = 1. (32)

We can the subtract the second and the third equation of (31) to the first one, so that{
σ1 − σ2 = µ (α1 − α2) ,
σ1 − σ3 = µ (α1 − α3) .

(33)

We can now use the following Proposition.

Proposition 4.1. For all t12, t13 ∈ R, the algebraic system of equation
y1 − y2 = t12 ,
y1 − y3 = t13 ,
y1y2y3 = 1 ,

(34)

has one and only one solution such that yj > 0 for j = 1, 2, 3. In particular, y1 is the maximal real root of
the polynomial

f (y1) = y1(y1 − t12)(y1 − t13)− 1 .

Proof. Since all the unknowns yj must be positive, from the first two equations (34) we get the
following restrictions {

y2 = y1 − t12 > 0,
y3 = y1 − t13 > 0.

(35)

In particular, y1 > ym := max{0, t12, t13}. By substituting (35) in the third equation of (34), we
get

f (y1) = y1(y1 − t12)(y1 − t13)− 1 = 0.

We now observe that f (ym) = −1 and f ′(y1) = (y1 − t12)(y1 − t13)+ y1(y1 − t13)+ y1(y1 − t12) >
0 for y1 > ym, therefore there exists one and only one positive solution of (34).

By Proposition 4.1, the system of equations (32)-(33) admits one and only one solution for
αj > 0, with j = 1, 2, 3. In particular, such a solution corresponds to the maximal real root of the
cubic polynomial

f (α1) = α1

(
α1 +

σ2 − σ1

µ

)(
α1 +

σ3 − σ1

µ

)
− 1. (36)

Furthermore, by using (33), it is immediate to see that

trA = 3α1 +
σ2 + σ3 − 2σ1

µ
, (37)

so that, by substitution in (36), we get that trA can be obtained as the maximal real root of

ξ3 + K2ξ + K3 − µ3 = 0, (38)
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where ξ = µ(trA)/3. Equation (38) is of the form ξ3 + γξ + ζ = 0, which is a depressed cubic
equation. To calculate its roots, we introduce the discriminant ∆, defined as

∆ =
ζ2

4
+

γ3

27
.

Based on the actual value of ∆ we have two cases.

• Case I: ∆ > 0. We have one real root of (38), given by the del Ferro-Tartaglia formula

ξ = 3

√
−γ

2
+
√

∆ + 3

√
−γ

2
−
√

∆−

• Case II: ∆ ≤ 0. Let ϕ be the argument of the complex number −γ/2 + i
√
−∆. Then the

three real roots of (38) are given by

ξ j = 2

√
− ζ

3
cos

ϕ + 2jπ
3

, with j = 1, 2, 3 ,

where the only acceptable solution ξ is given by ξ = max{ξ1, ξ2, ξ3}.

To conclude the derivation, we observe that

trBe = tr(AC). (39)

If we then multiply equation (29) by C

µAC = ΣdC+ ξC, (40)

whose trace is

µ trBe = µ tr(AC) = tr(ΣdC) + ξ(trC). (41)

Therefore, by substitution of (41) into (27) we can calculate the strain energy density in terms of
the invariants (24), that is

ψ = ψ(F, Σd) =
1
2
(ξ I1 + I4 − 3), (42)

and the associated Piola-Kirchhoff stress tensor

S = J−2/3 (ξF+ FΣd)−
(

1
3
(
ξ I1 + I4

)
+ J−2/3 p

)
F−T .

The situation in much simpler in the case of plane strain deformations, as discussed below.

4.4 Plane strain

We now assume plane strain deformations both during the generation of the initial stress and for
the subsequent elastic deformation. Thus, let (e1, e2, e3) be an orthonormal right-handed vector
basis, we assume that

F13 = F23 = F31 = F32 = P13 = P23 = P31 = P32 = 0, F33 = P33 = 1, (43)

where Mij = ei ·Mej and M is a second order tensor. Under this assumption, from (28) it results
that Σ13 = Σ23 = 0. Moreover, we get that one of the eigenvalues of A, say α3, is equal to one.
Therefore, (32) reduces to α1α2 = 1, which by (33) becomes

α1

(
α1 +

σ2 − σ1

µ

)
= 1. (44)
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Without loss of generality, we can take σ1 > σ2, so that the only admissible solution of (44) is
given by

α1 =

√
4µ2 + (σ1 − σ2)2 + σ1 − σ2

2µ
.

Thus, we get

ξ =
µ

3
trA =

√
4µ2 + (σ1 − σ2)2 + µ

3
. (45)

The principal deviatoric stresses rewrite from (31) as

σ1 =
1
6

(
3(σ1 − σ2)− 2µ +

√
4µ2 + (σ1 − σ2)2

)
σ2 =

1
6

(
−3(σ1 − σ2)− 2µ +

√
4µ2 + (σ1 − σ2)2

)
σ3 =

1
3

(
2µ −

√
4µ2 + (σ1 − σ2)2

) (46)

Note that both ξ and Σd can be expressed as a function of σ1 − σ2, as can be seen from (45) and
(46). Such a quantity can be computed from the invariants of the initial stress by introducing Σ∥

as the restriction of Σ to the plane spanned by (e1, e2). We have

σ1 − σ2 =

√(
trΣ∥)2 − 4 detΣ∥. (47)

Therefore, under the plane strain conditions detailed in (43), the modified free energy (42)
is univocally identified given Σ∥. Operationally, after fixing Σ∥, ξ and the principal deviatoric
stresses σ1, σ2 and σ3 compute by means of (45), (46) and (47). Furthermore, the principal stresses
of Σ∥ yield

Σ1,2 =
1
2

(
trΣ∥ ±

√(
trΣ∥)2 − 4 detΣ∥

)
,

so that the value of the resulting initial pressure pΣ can be calculated as

pΣ = σ1 − Σ1 or, equivalently, pΣ = σ2 − Σ2.

The non-vanishing components of Σd thus yield

Σd
11 = Σ11 + pΣ , Σd

22 = Σ22 + pΣ , Σd
12 = Σ12 , Σd

33 = Σ3.

As a test, we propose the analysis of the bending of a rectangle subject to a plane initial stress.

5 Bending of an initially stressed rectangular block

As depicted in Fig. 3, we consider as a reference configuration the set

Ω0 =
{

X = (X, Y, Z) ∈ E3 | − L/2 ≤ X ≤ L/2, 0 ≤ Y ≤ H, 0 ≤ Z ≤ 1
}

,

where X, Y, Z are the Cartesian coordinates with respect to an orthonormal right-handed vector
basis (eX , eY, eZ). The current configuration is instead described by means of a cylindrical system
(r, θ, z) with (er, eθ , ez) indicating the corresponding vector basis. We further assume plane
strain deformations as discussed in Section 4.4, so that z = Z. Boundary conditions specify as

θ = 0 for Y = 0,
θ = α for Y = H,
SeY = 0 for X = 0, L,
er · SeX = 0 for Y = 0, H.

13



Following [39], we then look for a homogeneous solution having the following form

r = f (X), θ = g(Y) =
αY
H

,

which represents a homogeneous bending of Ω0. The deformation gradient thus reads

F = f ′(X)er ⊗ eX + f (X)g′(Y)eθ ⊗ eY + ez ⊗ eZ (48)

= f ′(X)er ⊗ eX +
α f (X)

H
eθ ⊗ eY + ez ⊗ eZ .

From the incompressibility constraint (18), we get f ′(X) f (X) = H/α and gives

r = f (X) =

√
c1 +

2LX
α

, rA = f (−L/2) =

√
c1 −

LH
α

, rB = f (L/2) =

√
c1 +

LH
α

,

where c1 is a constant to be fixed by the boundary conditions once the material behaviour is
specified.

In order to proceed, we need to prescribe some constitutive assumptions on the material re-
sponse and the initial stress state. We assume that the block is composed of an incompressible,
initially stressed, Neo-Hookean material, where the strain energy density is given by (42). As an
example, we assume an axial initial stress of the form

Σ∥ = ΣYY(X)eY ⊗ eY.

We immediately have that DivΣ = 0. From (45) and (47) we get

ξ =
1
3

(
µ +

√
4µ2 + Σ2

YY

)
,

pΣ = −ΣYY
2

− µ

3
+

1
6

√
4µ2 + Σ2

YY ,

σ3 = µ − ξ .

Therefore, we get the following expression for the deviatoric part of the initial stress tensor Σd

Σd = pΣeX ⊗ eX + (ΣYY + pΣ)eY ⊗ eY + σ3eZ ⊗ eZ .

By (48), the left Cauchy-Green tensor results

B = FFT =
H2

r2 α2 er ⊗ er +
r2 α2

H2 eθ ⊗ eθ + ez ⊗ ez .

so the invariants Ī1 and Ī4 take the following expressions

Ī1 =
H2

r2 α2 +
r2 α2

H2 + 1 and Ī4 = pΣ
H2

r2 α2 + (ΣYY + pΣ)
r2 α2

H2 + σ3 . (49)

The balance of linear momentum in the current configuration reads divT = 0, which in cylin-
drical coordinates and under the kinematics assumption of this section reduces to the scalar equa-
tions

∂Trr

∂r
+

1
r
(Trr − Tθθ) = 0 , (50)

∂Tθθ

∂θ
= 0 , (51)

∂Tzz

∂z
= 0 , (52)
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Figure 3: Schematic of the geometry and boundary conditions adopted for the bending of a rect-
angular block.

where the non-vanishing components of the Cauchy stress tensor yield

Trr = (pΣ + ξ)
H2

r2 α2 − 1
3
( Ī4 + ξ Ī1)− p , (53)

Tθθ = (ΣYY + pΣ + ξ)
r2 α2

H2 − 1
3
( Ī4 + ξ Ī1)− p , (54)

Tzz = (σ3 + ξ)− 1
3
( Ī4 + ξ Ī1)− p . (55)

Notice that, owing to the kinematic assumptions and to the choice of the initial stress, Eqs. (51)-
(52) are trivially satisfied. We compute Trr by integrating (50) and applying boundary condition
Trr(rA) = 0

Trr(r) = −
∫ r

rA

1
r
(Trr − Tθθ)dr .

We then calculate constant c1 by further imposing Trr(rB) = 0, i.e. by resolving∫ rB

rA

1
r
(Trr − Tθθ)dr = 0 .

Finally, the hydrostatic pressure p yields

p(r) = (pΣ(r) + ξ(r))
H2

r2 α2 − 1
3
( Ī4(r) + ξ(r) Ī1(r))− Trr(r) .

Since we are not able to resolve (5) analytically, we calculate c1 numerically. Specifically, by
selecting L = 2, H = 5, α = π, µ = 1, and the initial stress component

ΣYY(X) = −µ
2X
L

,

we get c1 ≃ 3.83242.
For the sake of model validation, we compare the analytical solution with the one obtained by

numerical approximation of the governing equations. In particular, we implemented the model
equations into the open-source computing platform FEniCS [34] for their numerical resolution
through the Finite Element Method. The geometry and boundary condition of the problem are
depicted in Fig. 3. To handle the prescribed bending deformation, we impose the angle between
the x-axis and side AB incrementally till its magnitude equals α. Operationally, we impose such
a constraint in a variational manner through the introduction of an ad-hoc boundary Lagrange
multiplier by using the multiphenics library [2]. Therefore, the overall finite element formulation
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Figure 4: Bending of a rectangular block with initial stress: validation of the proposed numerical
implementation using the Finite Element Method. (a-b) Plot of the normalized radial stress Trr/µ
and hydrostatic pressure p/µ against the radial coordinate r for both the analytical and numerical
solutions. (c-d) Spatial distribution of the normalized radial stress and hydrostatic pressure in the
deformed configuration for the adopted finite element mesh.

accounts for three independent variables, i.e. the displacement field u, the hydrostatic pressure p,
and the boundary Lagrange multiplier λ. We approximate u and λ with second order elements
and p with first order elements.

Figs. 4a-b plots the resulting radial stress Trr and hydrostatic pressure p against the radial
coordinate r for both the numerical and analytical solutions. We observe an excellent agreement
between the two solutions, thus demonstrating the correctness of the proposed formulation. We
also report the spatial distribution of Trr and p in the deformed configuration in Figs. 4c-d for the
adopted finite element mesh. As expected, the considered stress components distributes in space
following a cylindrical symmetry.

The proposed formulation actually outperforms the conventional models for initially stressed
Neo-Hookean materials as shown in Fig. 5. Here, we gather the numerical outcomes for three
different finite element meshes obtained from a standard Neo-Hookean model without resorting
to the volumetric/deviatoric splitting proposed in this paper. Such a formulation is unable to
capture the imposed bending deformation since the algorithm fails to converge before reaching
the final load increment. Lack of numerical convergence follows from spurious volumetric lock-
ing as visible in the simulated spatial distribution of the normalized hydrostatic pressure near the
inner radius (see bottom of Fig. 5).
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Figure 5: Bending of a rectangular block with initial stress: numerical results obtained using
a standard model formulation without volumetric/deviatoric splitting. (Top) Simulated spatial
distribution of the normalized hydrostatic pressure for three different finite element meshes. The
reported results refer to the last simulated load increment before the algorithm fails to converge.
(Bottom) Magnification of the pressure distribution in the inner radius showing the typical mesh
dependent fluctuations resulting from volumetric locking.

6 Concluding Remarks

In this study, we delved into critical aspects associated with the modelling of initially stressed
materials, specifically focusing on a class of materials meeting two essential conditions:

A1. We required invertibility of the response function T0(Fe) for the relaxed material, as eluci-
dated in Section 2.2 (see Remark 2.1 for further discussion on this invertibility).

A2. We explored materials wherein the initial stress arises from an elastic distortion.

Our investigation highlighted the necessity for the invertibility of T0(Fe) to properly define
T̂(F, Σ). Moreover, we demonstrated that the commonly imposed initial stress reference indepen-
dence and initial stress compatibility condition stem naturally from the above two assumptions.
While (A1) is a prerequisite for defining T̂(F, Σ), (A2) may not hold in certain materials where
stress formation is accompanied by a change in material properties, as discussed in [42].

Drawing inspiration from Hoger’s work [20], we derived the general expression of the strain
energy density ψ̂(F, Σ) for materials satisfying (A1)-(A2). Notably, our analysis revealed that
ψ̂(F, Σ) may depend on I5 and I7 only if ψ0 is a function of I I(Be).

We then focused on incompressible media, demonstrating that the strain energy density can
be expressed in terms of the deviatoric part of the initial stress tensor Σ (denoted as Σd) and
the isochoric part of deformation F. This volumetric-deviatoric splitting enabled a reduction of
necessary invariants by one compared to existing models.

To illustrate the applicability of our approach, we applied it to an incompressible neo-Hookean
material (see (42)). Additionally, we examined the bending of an initially stressed rectangu-
lar block, obtaining an analytical solution. The numerical simulations demonstrated that the
volumetric-deviatoric splitting of energy exhibited superior performance over the original for-
mulation based on the energy proposed by [14], eliminating locking phenomena and aligning
perfectly with the theoretical solution.

The outcomes of this research contribute to the modelling of initially stressed materials, in-
cluding biological tissues and gels. The proposed volumetric-deviatoric splitting of the energy
density holds significant potential in computational mechanics, offering a substantial enhance-
ment to existing methodologies.
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Appendix A Expression of detPPT in terms of IΣ

To start with, we conveniently indicate with A = PPT . By application of the Cayley-Hamilton
theorem, we get

−A3 + tr(A)A2 − I I(A) + det(A)I = 0 ,

and, by taking the trace at both sides along with exploiting the definition of I I(A), it results

det(A) =
1
3

(
tr(A3)− tr(A) tr(A2) + tr(A)

tr(A)2 − tr(A2)

2

)
. (56)

To express (56) in terms of IΣ, we exploit (13), from which it results, after some manipulations,

tr(A) = 3β0 + β1 tr(Σ) + β2(tr(Σ)2 − 2I I(Σ)) ,

tr(A2) = 3β2
0 + (β2

1 + 2β0β2)
(

tr(Σ)2 − 2I I(Σ)
)
+ β2

2 tr(Σ4) + 2β0β1 tr(Σ) + 2β1β2 tr(Σ3) ,

tr(A3) = 3β3
0 + 3β2

0β1 tr(Σ) + 3β0(β3
1 + β2)

(
tr(Σ)2 − 2I I(Σ)

)
+ β3

1 tr(Σ3)

+3β2(β0β2 + β2
1) tr(Σ4) + 3β1β2

2 tr(Σ5) + β3
2 tr(Σ6) .

where tr(Σ3), tr(Σ4), tr(Σ5), and tr(Σ6) can be recast in therm of IΣ by repeatedly using the
Cayley-Hamilton theorem for Σ.
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