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We argue that nucleation of brittle cracks in initially flawless soft elastic solids is preceded by a
continuum instability which cannot be captured without accounting for geometrically and physical
nonlinearities of the constitutive response. To corroborate this somewhat counterintuitive claim, we
present a theoretical and numerical study of the simplest model where a homogeneous elastic body
subjected to tension is weakened by a free surface which then serves as a site of crack nucleation.
We show that in this prototypical setting, brittle fracture starts as a symmetry breaking elastic
instability activated by softening and involving large elastic rotations. The implied bifurcation of
the homogeneous elastic equilibrium is highly unconventional due to its extraordinary sensitivity to
geometry, reminiscent of the transition to turbulence. We trace the development of the instability
beyond the limits of continuum elasticity by using quasi-continuum theory allowing one to capture
the ultimate strain localization indicative of the formation of actual cracks.

While linearized elasticity theory is usually sufficient
in problems involving propagation of pre-existing cracks
[1–3], we present a compelling evidence that at least for
some classes of soft materials the description of crack
nucleation requires an account of both geometrically and
physical elastic nonlinearity [4, 5]. To elucidate the phys-
ical origin of the failure of linear theory, we use in this
Letter the simplest geometrically exact setting of non-
linear elasticity to study a tensile instability leading to
surface fracture.

The phenomenon of surface fracture is of considerable
recent interest because the sub-micron parts employed in
many modern applications are effectively defect free and
their fracture usually originates on unconstrained exter-
nal surfaces [6]. Crack nucleation at the surface is also of
importance for the understanding of the fragmentation of
coatings and other brittle surface layers [7–9]. More gen-
erally, the emergence of surface fracture patterns [10, 11]
is an example of a symmetry breaking instability which
is at the heart of complexity development in soft matter
physics [12, 13] and biophysics [14, 15].

Nonlinear elastic instabilities were studied extensively
in the context of compressive buckling [16–24]. Tensile
instability modes, such as necking, wrinkling and shear
banding, were studied as well [25–29], however their re-
lation to fracture has been largely overlooked. While
several studies have linked bulk crack nucleation with
material softening and advanced various phenomenolog-
ical nucleation criteria [10, 30–37], an understanding on
how such criteria relate to the subtle interplay between
geometric and physical nonlinearities along the crack nu-
cleation path, remains obscure.

In this Letter we explore both linear and nonlinear
stages of the tensile instability which culminates in the
formation of cracks. This instability is of spinodal type
[38–40] in its peculiar form associated with a surface
[41–45]. The degenerate nature of this instability [46]

leads to a rather remarkable sensitivity of the emerging
patterns to sample geometry. Such behavior, however, is
typical for systems with diverging correlation length and
is reminiscent of a transition to turbulence.

We show further that the above symmetry breaking
elastic instability serves as a precursor of the subsequent
ultimate strain localization. The emerging strain singu-
larities render the scale-free continuum elasticity inad-
equate. To describe the role of micro-scales we resort
to a phase-field-type extension of our continuum the-
ory [33, 47–49] which already allows one to model sub-
continuum fields representing developed cracks.

Consider a 2D rectangular body Ω = [−L, L]× [0, H].
Denote by x ∈ Ω points in the reference configuration
and by y(x) their deformed position, see Fig. 1. Using
directly the deformation gradient F = ∇y we account for
geometric nonlinearities; its singular values λ1,2 describe
stretches in coordinate directions while rotations remain
non-linearized [17].

Suppose that the body Ω is loaded in a two-sided hard
device, such that y1 = λx1 at x1 = ±L, where λ is the ap-
plied stretch which serves as the control parameter of the
problem. We assume that the material is incompressible,
so that detF = λ1λ2 = 1, and isotropic, so that the elas-
tic energy density can be written as ŵ(λ1) = w(λ1, λ

−1
1 ).

The force balance is then ∇ · P = 0, where Pij are
the components of the first Piola-Kirchhoff stress ten-

FIG. 1. Schematic representation of the considered surface in-
stability showing the reference and the actual configurations,
while also detailing the nature of the boundary conditions.
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FIG. 2. (a) The energy density ŵ(λ) of our softening material as a function of the maximal principal stretch λ1. (b) The
stability curves for the two modes with n = 1, 2; the purple line in the inset represents the function λcr(H/L). (C) The inverse
of the critical mode ncr versus the aspect ratio H/L.

sor P = ∂w/∂F + pF−1 and p is the Lagrange multiplier
enforcing the incompressibility constraint. On the side
boundaries x1 = ±L we impose y1 = ±λL together with
the free sliding condition P12 = 0; the upper boundary
x2 = 0 is assumed to be free so that P22 = P21 = 0; the
lower boundary x2 = H will be constrained only verti-
cally so that y2 = H/λ and P21 = 0.

The formulated elastic problem admits a homogeneous
solution y(0) := F(0)x, where F(0) = diag (λ, λ−1); the
corresponding pressure is p(0) := −λ−1∂w/∂λ2. To study
the stability of this solution, we use standard methods
[19, 50–52] and write the perturbed displacement and
pressure fields, in the form y = y(0) +

∑∞
j=1 ε

ju(j) and
p = p(0) +

∑∞
j=1 ε

jp(j) where ε is a small parameter.
Inserting these expansions in the force balance we ob-
tain, at the first order, a linear boundary value problem
for u(1) and p(1) which can be solved explicitly. Intro-
ducing the stream function u(1) = (∂2χ, −∂1χ), we ob-
tain χ = iAg(γx2) exp(iγx1)/γ + c.c., where A is still
undefined complex amplitude and c.c. denotes complex
conjugate. We have also introduced γ = (nπ)/(2λL)
the horizontal wavenumber, where n is an integer with
even (odd) values representing symmetric (asymmetric)
modes, respectively.

Following closely [19], we write the real valued func-
tion g in the form g(γx2) =

∑4
k=1 Ckexp[γωk x2], where

ω1 = −ω2 = α, ω3 = −ω4 = β. The constants
α, β can be found from the relations αβ = λ2 and
α2 + β2 + 2 = λ(λ4 − 1)η; the elastic energy enters these
relations through the function η(λ) = ŵ′′(λ)/ŵ′(λ) which
characterizes the physical nonlinearity.

In a body with the aspect ratio H/L, the elastic
instability, anticipating the nucleation of cracks, can
take place at the bifurcation points λn(H/L). They
are parametrized by the integers n(H/L) which can be
found from the condition that there exist a nontrivial set
of coefficients Ck, such that the corresponding solution
(u(1), p(1)) satisfies the boundary conditions at the linear
order. We can then define λcr(H/L) = minn≥1 λn(H/L)
and denote by ncr(H/L) the corresponding critical value
of the parameter.

The function λcr(H/L) characterizes the sensitivity of
the instability threshold to the geometry of the domain.
To illustrate this dependence, we consider a typical en-
ergy density with strain softening: w = µ (I−2)/I, where
I = λ2

1+λ2
2 is the first strain invariant and µ is the mea-

sure of rigidity. In this case ŵ(λ) = µ(λ2−1)2/(2(λ4+1))
and the softening (ŵ′′ < 0) takes place for λ > λlm =
4

√
(1/3)

(√
33 + 6

)
, see Fig. 2(a). The value λlm is known

as the Considère or the load maximum (LM) thresh-
old [52–54], where by the ‘load’ we understand the axial
stress P (λ) = e1 · P · e1 = ŵ′(λ) in the direction of trac-
tion; reaching this threshold indicates the occurrence of
necking in slender bodies [19, 25, 55, 56].

We observe that, independently of the value of n, the
functions λn(H/L), illustrated in Fig. 2(b) for n = 1, 2,
approach the point λlm ' 1.407 in the limit infinitely
small aspect ratios (H � L, thin domains, necking,
ncr = 1) and the point λcc ' 1.465 in the limit of in-
finitely large aspect ratios (H � L, thick domains). The
threshold λcc indicates the failure of the complementing
condition (CC); in an infinite system such a threshold
marks the onset of wrinkling instability where all wave
numbers become unstable simultaneously. This leads to
ultimate localization of the the unstable modes around a
free boundary [43, 45, 57–59]. In our case the value of the
CC threshold can be found analytically from the equation
η(λcc) = −λ−3

cc . In the classical geometrically linearized
elasticity theory, where it is assumed that both deforma-
tion and rotations are small, and instead of w(FTF) we
use w(E), where E = (1/2)(∇u +∇uT ), the very differ-
ence between the thresholds λcc and λlm disappears and
the whole complexity of the emerging stability diagram
(see below) is completely lost.

Outside these two easily accessible limits (of infinitely
thin and infinitely thick domains), the function λcr(H/L)
shown in the inset in Fig.2(b), looks rather disorderly.
However, the underlying rich and complex structure is
revealed if we consider instead the integer valued func-
tion ncr(H/L), see Fig.2(c). First of all, we observe that
the necking-type instability with ncr = 1 is not a fea-
ture of slender bodies only, but appears periodically as
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one changes the aspect ratio. Similarly, the wrinkling-
type instability with ncr = ∞ appears at periodically
distributed values of the aspect ratio; the corresponding
period 4λ3

cc/
√

−1 + 2λ2
cc + 3λ4

cc can be computed analyt-
ically since in the corresponding points H/L the eigenval-
ues α and β become complex conjugate and independent
of n. Between these special regimes we observe an appar-
ently periodic distribution of ‘staircase’ structures with
infinite number of steps in every period representing all
integer values of ncr. Each of these ‘staircases’ demon-
strates the same ‘devilish’ behavior near the accumula-
tion points, which all correspond to recurrent wrinkling
thresholds.

The above structure of the stability thresholds can be
corroborated by the observation that for H/L � 1 (when
λcr ∼ λcc) one can approximate the actual problem of
finding ncr(H/L), involving minimization of an implic-
itly given function over a discrete set, by a model problem
ξcr = arg maxξ(sin(aξ)/e

ξ), where ξ is a positive integer
and a ∼ H/L. The model problem can be solved ex-
plicitly and its solution ξcr(a) can be formally proved to
exhibit the periodic staircase structure of the type shown
in Fig.2(c). In physical terms one can argue that in each
period the system undergoes a scale-free crossover be-
tween necking and wrinkling. The steps of the function
ncr(H/L) emerge due to the locking phenomenon in the
ranges of aspect ratio H/L where both horizontal and
vertical oscillations of the displacement field can remain
resonant with the domain geometry. We emphasize the
extreme sensitivity of the critical wave numbers to the
aspect ratio at special geometries where the instability
pattern is changing dramatically from fully localized to
fully de-localized. The implied coexistence of vastly dif-
ferent scales is characteristic of spinodals in elastic sys-
tems exhibiting long range interactions [38, 60].

To complement the linear stability analysis and to de-
termine the nature of the associated bifurcations, we now
perform a standard weakly nonlinear study known as the
amplitude expansion in physics [61–64] and as Koiter’s
postbuckling analysis in mechanics [4, 65–67]. It reduces
to finding the next terms of the perturbative expansion
u(2) and p(2) and in particular, allows one to determine
the dependence of the amplitude A from the first order
expansion on the loading parameter λ.

We start with the ‘near necking’ regimes where the
buckling thresholds λn are well separated and only a fi-
nite number of modes are initially activated in the post-
buckling regime. In this case the natural small param-
eter is ε =

√
|λ− λcr|/λcr. By expanding the energy

functional W =
∫
Ω
w dx we obtain ∆W = ε4(θ2 |A|2 +

θ4 |A|4) + o(ε4), where θ2(λ), θ4(λ) are known real func-
tions. The requirement of stationarity of the energy in
A (at order ε4), gives the expression for the amplitude
A =

√
−θ2/(2θ4) which, since in the considered regime

θ2 and θ4 have the same sign, characterize the bifurcation

FIG. 3. Bifurcation diagrams showing the amplitude ∆H
of the unstable mode on the free surface for the cases: (a)
H/L = 1 (near necking case) and (b) H/L = 2.5 (near wrin-
kling case). The red triangles denote the critical thresholds
λcr. Solid and dashed lines represent the results of the finite
element simulations and of the weakly non-linear analysis, re-
spectively. Insets show the distribution of the maximal prin-
cipal stretch λmax in the actual configuration corresponding
to the location of the square marker.

as a subcritical (unstable) pitchfork, see the dashed line
in Fig. 3 (a). The unstable postbuckling is the diffuse
necking illustrated in the inset in Fig. 3(a).

The ‘near wrinkling’ regimes, where buckling thresh-
olds accumulate, are rather different. In this case a
small increment of the control parameter λ away from
the critical value λcr activates an essentially infinite num-
ber of instability modes. Therefore in the weakly non-
linear approximation an unstable mode interacts with
many marginally unstable modes. The availability of a
broad bandwidth of such modes requires a different scal-
ing and the the natural small parameter in this case is
ε = |λ − λcr|/λcr, see [68, 69] for similar analyses. In
order to take into account all the implied interactions we
also need to modify the expression for the stream func-
tion χ =

∑+∞
m=−∞ i(Am/γm)g(γmx2) exp(iγmx1) + c.c.

where m is an integer and Am is amplitude of the mode
m. We can then proceed as before and find the amplitude
equation, accounting for cubic resonances, in the form of

an infinite system θ1Am +
+∞∑

k=−∞
θ3(k)AkAm−k = 0. Here

the functions θ1(λ;m) and θ3(k)(λ;m) are again known
explicitly. The bifurcation is a subcritical pitchfork, see
the dashed line in Fig. 3(b), and the incipient postbi-
furcational mode, illustrated in the inset in Fig. 3(b) is
again unstable.

To complement this semi-analytical analysis we also
performed a numerical study of the nonlinear elas-
tic problem in the post bifurcational regime. We as-
sumed that the energy density is of the form w =
(µ/I) (I − 2 log J − 2) + (Λ/2)(log J)2, where J = λ1λ2.
For numerical convenience the material was taken to be
almost incompressible with Λ equal to 100µ; note that
as Λ → +∞ we recover both the original energy density
and the incompressibility condition.

To recover the bifurcated branch we introduced a
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FIG. 4. Normalized axial force F/µL versus the mean stretch
λ for the near necking case (H/L = 1). The insets on the
right show the distribution of the phase field variable α in the
reference configuration corresponding to the points A and B.
The parameter `0/H = 0.01.

small imperfection on the stress free boundary with a
wavenumber of the instability mode and a small ampli-
tude of the order of 10−5 L. We then used an arclength
continuation method [70, 71] which allowed us to extend
the bifurcated branch all the way till an extreme strain
focusing caused the local violation of the complementing
condition, see the blue lines in Fig. 3(a,b). The obtained
deformation patterns at the implied limit of the applica-
bility of continuum elasticity are illustrated in the insets
in Fig. 3(a,b) for the typical ‘near necking’ and ’near
wrinkling’ regimes.

The ultimate strain localization, which caused the
break down of our nonlinear elasticity model, is indicative
of the emergence of actual cracks. To capture the latter,
the scale-free continuum theory, which is expected to op-
erate only on long waves, can be regularized through the
introduction of a sub-continuum length scale. A conve-
nient quasi-continuum approach of this type is a phase-
field model of fracture [47, 48]. We can assume, for in-
stance, that wpf = (1−α)2(µ/2)(I−2)+µα2+µ `20‖∇α‖2,
where we introduced the damage-like scalar field α(x) ∈
[0, 1] and complemented the energy density with an addi-
tional term penalizing the gradient of α; the compatibil-
ity with our original nonlinear elasticity model is ensured
by the fact that w = minα∈[0,1][(1−α)2(µ/2)(I−2)+µα2].
The new internal length `0 serves as a cut-off preventing
ultimate strain localization and at `0 � L, we obtain
a Griffith-like fracture model with the finite toughness
Gc = µ`0/2 [33, 47, 72].

Using the phase field type model and adopting again
the weak compressibility regularization, we reproduced
and considerably extended the post-bifurcational results
obtained above. To minimize at each value of the load-
ing parameter λ the energy with respect to both, the de-
formation field y(x) and the phase-field α(x), we used a
Newton’s algorithm complemented by a standard pseudo-

FIG. 5. Normalized axial force F/µL versus the mean stretch
λ for the near wrinkling case (H/L = 2.5). The insets on the
right show the distribution of the phase field variable α in the
reference configuration corresponding to the points A and B.
The parameter `0/H = 0.01.

arclength continuation technique [70]. The results of
the two representative numerical simulations, illustrating
qualitatively different regimes, are presented in Figs. 4-
5: the ‘near necking’ case with H/L = 1 and λcr far
from λcc in Fig. 4 and the ‘near wrinkling’ case with
H/L = 2.5 and λcr close to λcc in Fig. 5. In both fig-
ures the (unstable) post-bifurcational response is illus-
trated through the dimensionless force-stretch relation
F (λ) =

∫ 0

−H
P11(λ)|x1=L dx2. The deformed fields close

and far from the bifurcation points are illustrated in the
insets through the phase field distributions which make
the emergence of developed cracks more visible. While in
our ‘near wrinkling’ regime we show the formation of two
cracks only, it is clear that the aspect ratio of the domain
could be chosen to exhibit an arbitrary large number of
emerging cracks.

One can see that in both cases shown in Figs. 4-5 the
development of elastic instability leads to gradual local-
ization of diffuse damage which precedes the actual for-
mation of cracks. The latter process takes the form of an
ultimate localization with the damage parameter reach-
ing the value α ∼ 1 in the crack-like regions, whose thick-
ness is of order `0. Since our study is focused on crack
nucleation, we did not advance our simulations all the
way till the eventual complete break down of the slab.
The study of such process would be of interest by itself
due to the possibility of secondary bifurcations represent-
ing, for instance, crack branching or selective crack arrest
[10].

To conclude, using the simplest geometrical setting
and focusing on initially flawless soft solids, we showed
that crack nucleation is preceded by an elastic instability
which can be singled out using conventional engineer-
ing elasticity only if the latter is understood as a contin-
uum theory accounting for both geometrical and physical
nonlinearities. Such a theory predicts a complex stabil-
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ity diagram with geometry-sensitive crossovers between
necking and wrinkling modes. Both necking and wrin-
kling instabilities were shown to result in the formation
of developed cracks if the classical elasticity is seamlessly
extended as a phase-field type quasi-continuum model.
Our analysis builds a bridge between nonlinear elastic-
ity and fracture mechanics and points to the existence
of purely elastic precursors of crack nucleation. Similar
mechanisms should be operative in other singular man-
ifestations of elasticity such as, for instance, cavitation
[73], phase nucleation [74] and creasing [75].
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