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A B S T R A C T

This thesis focuses on the mathematical modelling of soft and active solid
matter using continuum mechanics. An elastic body is said to be soft if it can
undergo large deformations; it is said to posses an active behaviour when it can
rearrange its micro-structure in presence of external stimuli, not necessarily of
mechanical nature. Examples of active processes are biological growth or the
contraction of dielectric elastomers provoked by an electromagnetic field.

The research activities undertaken concerned both analytical and numerical
tasks to solve some physical problems in this field. In particular, we focused
on:

• the constitutive theory of soft materials with initial stresses,

• the mathematical modelling of active phenomena in biological matter,

• the formation of patterns in soft solids due to a mechanical instability.

The thesis is organized as follows. In Chapter 1, we briefly expose some
basic notions of non-linear elasticity. We review the fundamental literature on
the mathematical modelling of biological growth and muscle contraction, and
on an emerging field in mechanics, called morpho–elasticity.

In Chapter 2, we investigate the mathematical description of elastic bodies
possessing a non-vanishing distribution of initial stress, i.e. the Cauchy stress
in the undeformed reference configuration. We provide new mathematical and
physical interpretations of the required constitutive restrictions, proving the ex-
istence of energy minimizers in the framework of the theory of initially stressed
materials.

In Chapter 3, we propose new mathematical models of active processes in
soft biological matter, particularly focusing on tumour growth and muscular
contraction. We show that it is not possible to recover the experimental stress-
stretch curve corresponding to a uniaxial deformation of a skeletal muscle us-
ing the active strain method, based on a multiplicative decomposition of the
deformation gradient. Instead, we propose an alternative model based on a
mixture approach, called mixture active strain. Moreover, we show that solid
tumours behave as growing poroelastic materials, where the growth is modu-
lated by a chemo–mechanical feedback. The results of our model are in very
good agreement with both in-vitro and ex-vivo experimental data.

In Chapter 4, we model morpho–elastic phenomena in both living and inert
soft matter. First, we investigate the mechanics of tumour capillaries, showing
that the incompatible axial growth of the straight vessel can trigger an elastic in-
stability, generating a tortuous shape. Second, we study how residual stresses
can induce mechanical instabilities in soft spheres, e.g. in growing tumour

v



vi abstract

masses. Considering several spatial distributions of the residual stress field, we
prove that different topological transitions occur in the sphere where the hoop
residual stress reaches its maximum compressive value. Third, we show that
gravity bulk force can cause an elastic instability in soft elastic bilayers. We
show that the non-linear elastic effects saturate the dynamic instability of the
bifurcated solutions that characterize fluid-like matter, displaying a rich mor-
phological diagram where both digitations and stable wrinkling can emerge.

Finally, the results of this thesis prove how the combination of nonlinearities
and nonconvexity in elastic mixed boundary value problems may emerge as
complex physical phenomena, whose understanding requires the development
of novel mathematical tools (Chapter 5).
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1 I N T R O D U C T I O N

This thesis deals with the mathematical modelling of soft and active solid
bodies using continuum mechanics. An elastic material is said to be soft if
it can undergo very large deformations. Furthermore, a material is said to
possess an active behaviour if it can rearrange its micro-structure in response
to non-mechanical stimuli.

The mathematical modelling of soft and active materials poses several open
challenges. First, soft solids may be subjected to large deformations, thus the
constitutive laws should take into account both physical and geometrical non-
linearities. Moreover, active materials are open thermo-dynamical systems that
generally operate in out-of-equilibrium conditions, driven by the micro-scale
flux of multiphysics energies, e.g. of chemical or electrical origin, that are
transformed into mechanical energy.

This work is motivated by the increasing interest in developing accurate mod-
els of soft and active materials for engineering applications, such as the design
of new metamaterials using additive manufacturing. It also responds to a basic
science interest for providing a mathematical understanding of some processes
in developmental biology, such as the emergence of shape and the generation
of active stresses in living matter.

In the following, we summarize the basic mathematical notions characteriz-
ing the theoretical background of this thesis.

1.1 basic notions of non-linear elasticity

In this Section, we collect some basic notions of non-linear elasticity. After
introducing the kinematic description of the main balance laws, we focus on
the mathematical well-posedness of constitutive models in hyperelasticity.

1.1.1 Kinematics and balance equations

We denote by L(Rn) the set of all the automorphisms of Rn, and by L+(Rn)

the group (with respect to the operation of function composition) of all the
linear applications belonging to L(Rn) with positive determinant.

Let O(Rn) be the group such that

QTQ = I ∀Q ∈ L(Rn)

where I is the identity.

1



2 introduction

We indicate with O+(Rn) ⊂ O(Rn) the group of all the elements of O(Rn)

with positive determinant; if n = 3, this group coincides with the set of the
rigid rotations. We also introduce the set S(Rn) of all the symmetric linear
applications belonging to L(Rn).

Denoting by E3 the three-dimensional Euclidean space, we call reference con-
figuration of the body a regular subset Ω0 of E3.

Let X ∈ Ω0 be the Lagrangian or Material coordinate of a point. The motion is
described by the vector field ϕ, called deformation:

ϕ : Ω0 → R3.

We indicate with Ω := ϕ(Ω0) the deformed configuration of the body. Let
x(t) = ϕ(X, t) be the Eulerian or spatial coordinate of the point X. We indicate
with F = Gradϕ the deformation gradient. We assume that J = det F > 0, so that
F(X) ∈ L+(R3).

The vector
u(X) = ϕ(X)− X

is the displacement of a point X ∈ Ω0, so that F = I + Grad u, where I is the
identity matrix. We consider bodies with a continuous distribution of mass.
Let ρ be the density field, imposing the conservation of mass for each subset of
Ω, we obtain

ρJ = ρ0

where ρ0 is the mass density in the reference configuration.
The following Cauchy postulate allows to model the internal forces exchanged

within the body Cauchy postulate:

Axiom 1.1.1. If S ⊂ Ω is a surface with normal n, there exists a vector field

t(x, S)

representing the density of force per unit area exerted through S by a material from one
side of S to the other.

This assumption states that the internal forces act like a flux through S. We
can now state the conservation of linear momentum in Eulerian form. Its ex-
pression in the quasi static case reads∫

P
ρb dx +

∫
∂P

t ds = 0, (1.1)

where b is the density of external force per unit mass and P is a regular subset of
Ω. We now illustrate the Cauchy theorem, a milestone of continuum mechanics
[102].

Theorem 1.1.1 (Cauchy stress theorem). For each x ∈ Ω the vector field t(x, n) is
linear in n; in other words, there is a tensor field T, called Cauchy stress tensor, such
that

Tn = t.
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Moreover T is symmetric if and only if the conservation of angular moment holds, i.e.:∫
P

ρx× b dx +
∫

∂P
x× t ds = 0. (1.2)

Applying the Cauchy stress theorem and the divergence theorem, it follows
that

ρb + div T = 0, (1.3)

which gives the balance of linear momentum.
For an elastic body, it is assumed that the Cauchy stress tensor depends on

the deformation gradient, i.e.

T = T(X, F(X)).

The Cauchy stress tensor describes the contact force per unit area in the
deformed configuration. Its counterpart in the reference configuration is the
first Piola-Kirchhoff stress tensor P, defined as the Piola transformation of T, i.e.

P = JF−1T. (1.4)

Setting now B = Jb, we can state the Lagrangian form of the equation of
equilibrium:

Div P + ρ0B = 0.

Finally, we impose Dirichlet boundary conditions on a part of the boundary,
enforcing the displacement on a subset Γ0, and Neumann boundary conditions
on the remaining part, describing the force applied on a subset Γ1, leading to
the following mixed boundary value problem

Div P + ρ0B = 0, in Ω0

u = u0, on Γ0

PT N = s0, on Γ1

Γ0 ∩ Γ1 = ∅, Γ0 ∪ Γ1 = ∂Ω0.

which represents a general form of a boundary value problem in nonlinear
elasticity.

1.1.2 Constitutive laws in hyperelasticity

A material is said to be perfectly elastic if it does not produce entropy when
deformed [209, 113]. Thus the internal dissipation is zero during any admissi-
ble motion and the second law of thermodynamics degenerates into an equality.
Such a material is said to be hyperelastic if there exists a free energy density ψ,
also known as strain energy density, depending only on the deformation gradi-
ent.
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Exploiting the Clausius-Duhem form of the second law of thermodynamics,
it is possible to prove that the constitutive equation for a hyperelastic material
reads:

P =
∂ψ

∂F
Pij =

∂ψ

∂Fji
,

where ψ may depend on the material position X if the body is inhomogeneous.
One of the first soft material that has been extensively studied is rubber. In-

deed, from the pioneering work of Treloar [208] it was clear that the theory of
linear elasticity is not appropriate to model rubbery materials, in particular in
the regime of large deformations (see Fig. 1.1). Rubber can indeed maintain an
elastic behaviour even when subjected to extension of over 400% with respect
to the initial length.

To reproduce experimental results of the finite deformation of soft tissues it is
necessary to exploit nonlinear constitutive relations [209]. The dependence of ψ

on F can be restricted making use of the constitutive restrictions of continuum
mechanics. Indeed, the energy must be independent of the position of the
reference frame, leading to the frame indifference axiom, stating that

ψ(F) = ψ(QF) ∀F ∈ L+(R3) and ∀Q ∈ O+(R3).

A direct consequence of this assumption, together with the polar decomposition
theorem, is that a strain energy function is frame indifferent if and only if

ψ(F) = ψ̂(C),

Figure 1.1: Stress–strain curve of 2 dimensional extension of rubber, from [208]
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where C = FTF is the right Cauchy-Green tensor.
Moreover, ψ should also satisfy the so called non-degeneracy axiom in order to

avoid the possibility to infinitely deform the material with a finite amount of
energy: ψ(F)→ +∞ when det F→ 0+

ψ(F)→ +∞ when |F|+
∣∣∣F−1

∣∣∣→ +∞

where |F| =
√

tr(FTF). It is possible to prove that, if a material response is
isotropic (i.e. ψ(F) = ψ(FQ) for all Q ∈ O+(R3)), then the strain energy density
can be expressed as a function of the principal invariants of the right Cauchy-
Green tensor C [180], namely

ψ = ψ(I1, I2, I3),

where

I1 = tr C, I2 =
(tr C)2 − tr C2

2
, I3 = det C.

If the material is incompressible, i.e. det F = 1, a simple non-linear elastic
model is given by

ψ(F) = C10(I1 − 3) + C01(I2 − 3),

which is the so called Mooney–Rivlin [144, 180] strain energy, where C10 and
C01 are two material parameters, so that

C10 + C01

2

is the shear modulus. With the assumption C01 = 0, we obtain the neo–
Hookean model [144, 206, 207].

1.1.3 Well posedness of the non-linear elastic problem

The mathematical well-posedness of the nonlinear elastic problem has been
extensively studied since the second half of the past century. While the exis-
tence [85, 114] and the uniqueness [123] of the solution of the mixed boundary
value problem of linear elastostatics can be proved exploiting the convexity of
the strain energy, the non-linear problem is much more complicated.

Let us introduce the strain energy functional, defined as

E [ϕ] =
∫

Ω0

ψ(Gradϕ) dX,

letW [ϕ] be the total work of the external forces, defined as

W [ϕ] =
∫

Ω0

ρ0B ·ϕdX +
∫

Γ1

s0 ·ϕdS
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so, the total mechanical energy of the body is given by the functional

F [ϕ] = E [ϕ]−W [ϕ].

The convexity of the strain energy density would imply the existence of elas-
tic minimizers due to the weak lower semicontinuity (WLSC) of the energy
functional F with respect to the weak convergence in W1,p(Ω0, R3) [81] with
1 < p < ∞, where W1,p(U, V) denotes the Sobolev space of all the functions

f : U → V U ⊂ Rn, V ⊂ Rk

such that there exists the first weak derivative and both the function and the
first weak derivative belong to the Lesbegue space Lp(U, V).

If a functional is WLSC, we can apply the direct method of calculus of vari-
ations, ensuring the existence of a minimizer of the functional [81]. Indeed,
all the critical points of a functional must satisfy the Euler-Lagrange equation
which, in the case of the energy functional F , coincides with the equation of
motion.

However, the main issue is the lack of convexity of the strain energy E . In-
deed, convexity is incompatible with the constitutive assumption of continuum
mechanics, such as frame-indifference and non-degeneracy of the strain energy
[61, 54]. Thus, different conditions, weaker than convexity, should be consid-
ered to exploit the direct method of calculus of variations for proving the exis-
tence of energy minimizers.

A physically motivated requirement is the so called Legendre-Hadamard con-
dition, or strong ellipticity, stating that

∂2ψ(F)

∂F∂F
(a⊗ b) · a⊗ b ≥ 0, ∀a, b ∈ R3, |a| = |b| = 1.

The Legendre-Hadamard condition with a strict inequality implies that body
waves can propagate in an elastic medium with a real velocity. An equivalent
property is the so called rank-1 convexity, stating that the function f

f (t) = ψ(F + ta⊗ b)

is convex for all a, b ∈ R3 with |a| = |b| = 1. However, even if it is a physically
motivated requirement, strong ellipticity does not ensure the WLSC of E .

In 1952, Morrey [147] introduced the more restrictive conditions of quasi-
convexity, strictly linked to the WLSC of the energy functional.

Definition 1.1.1. Let ψ : L+(R3) → R be a continuous function. The strain energy
density ψ is quasi-convex if, for all F ∈ L+(R3) and for all the functions ζ ∈
C1

0(Ω0, R3) the following inequality holds:∫
Ω0

ψ(F + Grad ζ(X)) dX ≥ |Ω0|ψ(F),

where C1
0(U, V) indicates the set of all functions f : U → V with compact support and

that are differentiable with a continuous first derivative and |Ω0| denotes the Lebesgue
measure of Ω0.
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Quasi-convexity is a non-local condition that rarely provides an operative
rule for constitutive modelling.

It is possible to prove that all convex function ψ are also quasi-convex. Most
importantly, if an energy functional is weakly lower semicontinuous, then the
strain energy density is quasi-convex. The converse of the previous theorem is
also true: Acerbi and Fusco proved that if the strain energy density is quasi-
convex and satisfies some growth condition, E [ϕ] is WLSC with respect to the
weak convergence in W1,p(Ω0, R3) [1]. Moreover, quasi-convexity implies the
Legendre-Hadamard condition, so that quasi-convexity is a stricter condition
than rank-1 convexity. However, even if the quasi-convexity is a very important
property, it is very hard to prove that a function possesses this feature.

A more restrictive property (but easier to prove) is polyconvexity:

Definition 1.1.2. A strain energy density ψ(F) is said polyconvex if there exists a
convex function h : R19 → R such that

ψ(F) = h(F, Cof F, det F),

for all F ∈ L+(R3).

Polyconvexity is a more restrictive condition than quasi-convexity. Indeed, if
ψ is a finite polyconvex function, then it is also quasi-convex.

The existence of solutions of the non-linear elastic problem for polyconvex
strain energy functional has been proven by Ball [23] under some regularity
assumptions on the strain energy and on the reference domain. It is reported
here in the following Theorem.

Theorem 1.1.2. Let Ω0 ⊂ R3 be a connected, bounded and open subset with a regular
boundary and let ψ : Ω0 ×L+(R3)→ R be a strain energy density such that:

(i) (polyconvexity) There exists a Carathéodory function g : Ω0 ×R19 such that
g(X, ·) is convex and such that

ψ(X, F) = g(X, F, Cof F, det F), ∀F ∈ L+(R3).

(ii) (continuity at the infinity) if Fh → F, Ch → C and δh → 0+, then

lim
h→∞

g(X, Fh, Ch, δh) = +∞

(iii) (coercivity) there exist α > 0, β ∈ R, p ≥ 2, q ≥ p/(p− 1), r > 1 such that:

g(X, F, C, δ) ≥ α(|F|p + |C|q + δr) + β ∀F, C ∈ L(R3), δ > 0.

We assume that there exist two disjointed subsets Γ0, Γ1 such that ∂Ω0 = Γ0 ∪ Γ1 and
such that |Γ0| > 0. Let f : Ω0 → R3 and s0 : Γ1 → R3 measurable such that the
application

W [ϕ] =
∫

Ω0

f ·ϕdX +
∫

Γ1

s0 ·ϕdS
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is continuous on W1,p(Ω0, R3). Finally let ϕ0 : Γ0 → R3 be a measurable function
and such that the set

U =
{

ϕ ∈W1,p(Ω0, R3) | Cof Gradϕ ∈ Lq, det Gradϕ ∈ Lr,

det Gradϕ > 0 a.e. in Ω0, ϕ = ϕ0 on Γ0

}
. (1.5)

is non-empty.
Then, defining the functional F : U → R∪ {+∞} as

F [ϕ] = E [ϕ]−W [ϕ]

and assuming that infF [ϕ] < +∞, there exists

min
ϕ∈U
F [ϕ].

In summary, the existence of a solution for a non-linear elastic problems can
be proved by introducing a different condition than the convexity of its strain
energy. The uniqueness of the solution for a non-linear elastic problem will
depend on the combination of both geometrical and constitutive non-linearities.
The conditions related to the lack of local uniqueness in non-linear elasticity
lead to identify the onset of material and structural instability, which are related
to a different topology at the admissible variation [99].

1.2 active materials

Active media are open thermodynamical systems working in out of equilib-
rium conditions and subjected to multiphysical energy flux. For examples, in
sarcomeres, the functional units of muscles, the presence of both a chemical po-
tential due to Calcium ions and electrical stimuli, induces an active contraction
in muscles, converting chemical and electrical potential energies into mechani-
cal stress and heat.

The mathematical modelling of the active kinematics of these materials is
a rapidly developing research field that poses several challenges, since active
phenomena have a complex, multi-physical and non-linear nature. Active ma-
terials are found in both biological media, such as the muscle tissue [125] or
solid tumors [7], and inert matter, such as dielectric elastomers [163, 63] or
hydrogels[135, 27]. In all these cases, there is a dissipative consumption of the
non-mechanical energy involved in the process. Thus, contrarily to the the-
ory of hyperelasticity, an inequality should be considered in the second law of
thermodynamics. Many attempts have been performed to extend the classical
theory of non-linear elasticity in order to capture the active behaviour of active
materials.

In this thesis we focus on the mathematical modelling of two categories of
active processes in living matter: growth, and the active generation of stress.
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1.2.1 Growth and remodelling

One of the possible outcomes of an active process is change of the macro-
scopic shape thanks to the microscopic rearrangement of matter [5]. Such a
reorganization of matter is called remodelling in absence of mass generation, it
is named growth otherwise [78, 95]. The local distortion of the material caused
by growth or remodelling may however lead to a geometrically incompatible
configuration with a non-Eucliedan metric. The restoration of compatibility
is possible through an elastic distortion of the local unstressed configuration.
This elastic process generates residual stress inside the body [109], defined as
the stress field present in a body in absence of external forces.

The response of residually stressed materials has been modelled exploiting
two main approaches. The first one is based on a multiplicative decomposition
of the deformation gradient into two contributions

F = FeG (1.6)

where G is the tensor field describing the inelastic change of shape induced
by the microstructural rearrangement of the matter while Fe accounts for the
elastic deformation of the body [126, 128, 181]. The time evolution of the tensor
G should be in agreement with the second law of thermodynamics; an example
is provided by the following growth law [6]:

Ġ = −K(E− E0)

where K is a symmetric positive definite matrix, E0 is the target, or homeostatic,
stress, while E is the Eshelby stress tensor, defined as

E = ψ(F)I− FTPT.

Such a constitutive law is supported also by experimental evidence; in fact,
many growth processes are modulated by the stress of the medium. For exam-
ple Helmlinger et al. [106] studied the influence of stress exerted on a multi-
cellular tumour spheroid while Yamamoto et al. [216] investigated the effect of
mechanical stress on the growth of cultured collagen fascicles.

A different approach to model residual stresses is the so-called theory of
initially stressed materials, in which the strain energy density is assumed to
depend on both the deformation gradient and on the residual stress field Σ,
namely

ψ = ψ(F; Σ).

Both approaches are reviewed in Chapter 2 where we investigate the influence
of the constitutive assumptions on the existence of elastic minimizers.

1.2.2 Active strain versus active stress

Another interesting process is the active generation of mechanical stress,
where chemical or electrical energy is converted into mechanical stress as a
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result of a dissipative process. In this respect, important examples are muscle
tissue and dielectric elastomers.

The active strain approach[125] uses the multiplicative decomposition (1.6),
where G accounts for the local distortion caused by the active stress. Such an
approach is reviewed in Chapter 3.

A different approach considers an additive split for the active stress[9], so
that:

P =
∂ψ

∂F
+ Pact,

and the Piola stress is given by the sum of an elastic and an active contribution.
The tensor Pact should be constitutively provided by the means of an evolution
law which is usually a function of the deformation gradient and of the phys-
ical quantities underlying the active generation of stress (e.g. electrical field,
concentration of chemical reagents).

In Chapter 3 we study both active processes. First, we model the active
growth of a multicellular tumour spheroid, exploiting a chemo-mechanical
feedback law, we then critically review the active strain approach for the mod-
elling of muscle tissue, taking into account in vivo experimental results.

1.3 morpho–elasticity

As previously discussed, the convexity of the strain energy is mathematically
incompatible with the constitutive assumptions of non-linear elasticity. As a
result, the non-uniqueness of the solution of a non-linear elastic problem can
give rise to several morphological transitions that are governed by geometrical
and constitutive non-linearities.

Geometric non-linearities can trigger the loss of uniqueness also in linear
elastic problems, such as the buckling of a column subjected to an external
load (see Fig. 1.2). This problem was studied first by L. Euler. He proved that,
if the column is subjected to a load higher than τcr, defined as

τcr =
π2EI

L2 ,

it will deviate from its straight configuration (here E is the Young modulus, I
is the inertia moment with respect to the axis of the column and L is the length
of the column).

In the theory of non-linear elasticity, geometrical and physical non-linearities
(i.e. non-linearities included in the constitutive stress-strain relations) are cou-
pled. The first one leads to the so-called structural instability, such as buckling,
the second one is related to material instability such as creasing, namely the
formation of sharp furrows at the free surface of a compressed elastic slab.

Methods of perturbation theory can be applied to study the stability of so-
lutions in finite elasticity. The basic approach to study structural instabilities
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in non-linear elastic media is based on the theory of incremental deformations
superposed on a finite strain [29, 31, 124, 156]. Analogously to the method of lin-
earisation used to study the stability of a solution of a non-linear differential
equation, let u0 be a displacement field solution of the elastic problem. We in-
dicate with Ω the actual configuration corresponding to the displacement field
u0. A small displacement δu, called incremental displacement field, is added to
u0, so that

u = u0 + δu.

If we assume that δu is small with respect to the W1,∞(Ω, R3) norm, we can
linearise the non-linear elastic problem about the configuration Ω, considering
δu as the unknown of the incremental equations. A bifurcation occurs if the
linearised incremental problem admits a non null solution. Similar perturbation
techniques have been devolped also for viscoelastic solids by Dixit et al. [71].

One of the most classical examples is provided by the compression of a half-
space composed of a neo–Hookean material, first studied by M. Biot [30]. When
the body is compressed in a direction parallel to the free surface beyond a
critical value, the homogeneous solution becomes unstable. Even if this is one
of the first and apparently one of the most simple example of instability in a
non-linear elastic body, its behavior is still not completely understood and it is
still an open problem [112, 44, 56].

Elastic instabilities may be triggered not only by an applied stretch but also
by active phenomena. In fact, whenever such underlying transformations in-
troduce a geometrical incompatibility in the micro–structure, a state of internal

Figure 1.2: Illustration of the Euler problem, taken from the original article of L. Euler
[80]
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stress arises in the material in order to accommodate these misfits. The accumu-
lation of such internal stresses beyond a critical threshold may drive the onset
of an elastic bifurcation.

Several models have successfully described many morphological transitions
in living and inert matter [26, 96, 62, 67]. The theoretical study of these mod-
els have led to the development of a new field, called morpho-elasticity. Its aim
is to describe how different shapes and patterns emerge as a result of active
processes and elastic instabilities in soft matter. This vibrant research field has
rapidly developed in the last decade, pushed by the technological availability of
experimental devices controlling the extreme deformations of soft incompress-
ible materials, such as hydrogels [202, 66, 122] and elastomers [218, 121].

1.4 outline of the thesis

The thesis is divided into five chapters. In Chapter 2 we address the issue
of the existence of elastic minimizers in the framework of the theory of initially
stressed materials. In fact, in the modelling of soft and active solids, we usu-
ally exploit a reference configuration that does not coincide with the relaxed
one. We study the influence that the constitutive assumptions has on the well
posedness of the non-linear elastic problem and we investigate the mechanical
interpretation of these constitutive restrictions. We also analyse the influence
that some of these assumptions, such as the so called initial stress reference
independence, have on the mechanical properties of the materials.

In Chapter 3, we address the issue of modelling growth and active genera-
tion of stress in living matter. First, we mathematically describe the growth of
a solid tumours introducing a new growth law based on a chemo-mechanical
feedback. Our model is then compared with in vitro and ex vivo experimental
results. Second, we study the process of activation in muscles. The active strain
approach is reviewed, comparing the outcomes of this method with experimen-
tal results on the uniaxial traction of a skeletal muscle.

In Chapter 4, we study morpho–elastic processes and pattern formation in
soft matter. Indeed, topological transitions can appear as result of the accu-
mulation of mechanical stress due to the application of large strains or the
activation of the material. First, we propose a new model of the morphogenetic
mechanisms underlying the tortuosity of tumour capillaries. Second, we study
the stability of an initially stressed sphere. Finally, we investigate the elastic
equivalent of the Rayleigh-Taylor instability in fluids.

Finally, in Chapter 5, we summarize the main results of the thesis, together
with some concluding remarks.



2
O N T H E E X I S T E N C E O F E L A S T I C
M I N I M I Z E R S F O R I N I T I A L LY
S T R E S S E D M AT E R I A L S

In many cases, it is convenient to model active elastic bodies exploiting a
reference configuration which does not coincide with the relaxed one. More in
general, we call these media initially stressed bodies.

The stress field in the reference configuration Σ is called initial stress and
must satisfy the equilibrium equations. Initial stresses are commonly observed
in soft materials. The presence of external stimuli in active matter, e.g. an elec-
tric field in dielectric elastomers, generate a distortion of the microstructure of
the material that is made physically compatible by the emergence of an inter-
nal state of stress. In living matter, initial stresses are also known as residual
stresses [109, 118, 119, 120], and they result from incompatible growth processes
both in healthy and pathological conditions [198, 59]. Such residual stresses not
only may enhance the functionality and the efficiency of biological structures,
e.g. in arteries [53], but they may also be used to trigger a programmed shape
transition through a mechanical instability, forming complex patterns such as
the intestinal villi [57] or the brain sulci [24].

From a constitutive viewpoint, a well established approach to account for
initial stresses is based on the multiplicative decomposition of the deformation
gradient into an elastic deformation tensor and an incompatible tensor [28, 126,
128]. In Chapter 2, we review this approach reffering to it as the theory of elastic
distortions. This method was initially applied to provide a kinematic description
of crystal plasticity [174], and later adapted to describe active phenomena, such
as the muscle contraction [125, 200] and the volumetric growth [181].

The main assumption behind this theory is that the properties of the material
does not change during the material activation, only the spatial distribution of
matter is affected [78]. Indeed, the theory of elastic distortions is well suited to
model the remodelling and the volumetric growth of a body.

Assuming a material isomorphism for the strain energy function, the initial
stress is constitutively related to the elastic deformation tensor from the virtual
incompatible state. Since the tensor describing the inelastic distortion is not
necessarily the gradient of a deformation, it maps the unloaded configuration
into a virtual state that may not possess a Euclidean metric [120]. Accordingly,
the main drawback of this approach is that such a virtual state may not be
achieved in physical practice, not even by cutting procedures, and the tensor
describing the inelastic distortion must be assumed a priori in order to generate
a self-equilibrated state of initial stresses.

13
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A less restrictive mathematical framework accounts for initial stresses by for-
mulating implicit constitutive equations linking the Helmoltz free energy, the
initial stress and the kinematic quantities possibly mapping the evolving natu-
ral states of the materials [167]. For soft solids, this constitutive approach has
shown that there exists a far richer class of non-dissipative materials than the
class of bodies that is usually understood as being elastic [168].

As first discussed in [189], objectivity is enforced for an initially stressed
material made by an isotropic material by considering a dependence on the
ten invariants of the deformation gradient and the initial stress tensor. Under
the incompressibility constraint, it has been shown that only eight invariants
are independent [191]. This method has been widely used to model initially
stressed materials; applications of this theory include of wave propagation in
soft media [190, 157], the modeling residual stress in living tissues [212] and
the stability of residually stressed materials [60, 182, 179].

The main advantage of this approach is that the initial stress tensor Σ be-
longs to the set of the divergence-free symmetric tensor fields satisfying the
boundary condition in the given reference configuration, whilst it is still un-
clear which physical restrictions must be imposed for the well-posedness of the
elastic problem. A basic constitutive restriction known as the initial stress com-
patibility condition (ISCC) imposes that the Cauchy stress reduces to the initial
stress when the deformation tensor is equal to the matrix identity [189, 97]. By
imposing ISCC and the polyconvexity of the resulting strain energy function in
the absence of initial stresses, few constitutive relations have been proposed. A
simple functional expression has been proposed in [139], containing material
parameters that also depend on the particular choice of the reference configura-
tion, as generally prescribed by [209]. A more restrictive constitutive class has
been proposed in [97], assuming that the material parameters do not change
under a change of reference configuration. This assumption has lead to define
a new condition. i.e. the initial stress reference independence (ISRI) [98], that
is inspired by the multiplicative decomposition approach.

These two methods are frequently used in the modelling of active soft matter.
However, the link between the existence of elastic minimizers and the constitu-
tive assumptions for initially stressed materials subjected to finite deformations
is still not fully investigated. As a common background for the topics of the
next Chapters, in Chapter 2, we review both the methods and we aim at clari-
fying some constitutive aspects of the mathematical theory of initially stressed
materials, unravelling the main implications of imposing the ISRI condition on
the existence of elastic minimizers.

The Chapter is organized as follows. In Section 2.1, we provide some basic
kinematic and constitutive notions for nonlinear elastic materials. In Section 2.2,
we introduce the main differences of the proposed mathematical framework for
initially stressed materials with respect to the theory of elastic distortions, dis-
cussing the mechanical signification of the ISCC and the ISRI conditions. In
Section 2.3, we prove the local existence of a relaxed state for each material
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point. In Section 2.4, we prove that the residual stresses provoke an elastic dis-
tortion on the transformation of the symmetry group. We also give en existence
theorem for the elastic minimizers for the proposed constitutive choice of the
initially stressed material. In Section 2.5, we use the proposed framework to
solve the physical problem of an elastic disc subjected to an anisotropic initial
stress. Finally, the results are summarized and critically discussed in the last
section.
The results of this chapter lead to the following publication:

D. Riccobelli, A. Agosti, and P. Ciarletta. On the existence of elastic minimiz-
ers for initially stressed materials. Philosophical Transactions of the Royal Society
A: Mathematical, Physical and Engineering Sciences, in press

2.1 background and notation

We denote by L(Rn) the set of all the automorphisms of Rn, and with L+(Rn)

the group (with respect to the operation of function composition) of all the
linear applications belonging to L(Rn) with positive determinant.

Let O(Rn) be the group such that

QTQ = I

where Q ∈ L(Rn) and I is the identity.
We indicate with O+(Rn) ⊂ O(Rn) the group of all the elements of O(Rn)

with positive determinant; if n = 3, this group coincides with the set of the
rigid rotations. We also introduce the set S(Rn) of all the symmetric linear
applications that belong to L(Rn).

Let the open set Ω0 ⊂ R3 be the reference configuration of a body and X ∈
Ω0 the material point. We denote the deformation field by ϕ ∈ C2(Ω0, R3)that
maps the reference domain Ω0 to the actual configuration Ω.

Accordingly, the deformation gradient reads F = Gradϕ. If the body is
made of a homogeneous elastic material, we assume a purely elastic constitu-
tive behavior such that the Cauchy stress tensor T0 depends on the deformation
gradient F.

We say that the body has a relaxed reference configuration if

T0(I) = 0, (2.1)

where T0 is the Cauchy stress and I is the identity tensor.
If the body is composed of a hyperelastic material, we denote its strain energy

density in a point X with ψ0(F(X)) : L+(R3) → R. Whenever appropriate, we
omit the explicit dependence of the physical quantities on the material position
X. The first Piola–Kirchhoff and the Cauchy stress tensor are given by

P0(F) =
∂ψ0

∂F
T0(F) =

1
det F

FP0(F),
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Table 2.1: List of functional spaces

Symbol Definition

L(Rn) Set of all the linear applications from Rn to Rn.
L+(Rn) Set of all the L ∈ L(Rn) such that det L > 0.
O(Rn) Set of all the orthogonal tensors Q ∈ L(Rn), namely all the Q

such that QTQ = I.
O+(Rn) Set of all Q ∈ O(Rn) such that det Q > 0.
S(Rn) Set of all the symmetric linear applications from Rn to Rn,

namely all the L ∈ L(Rn) such that LT = L

L+
1 (R

n) Special unitary group, namely the subset of L+(Rn) with de-
terminant 1.

D Denotes L+(Rn) for a compressible material, or L+
1 (R

n) for an
incompressible material.

C0(U, V) Set of all the continuous function from the set U ⊆ Rn to the
set V ⊆ RN .

Ck(U, V) Set of all the function from the set U ⊆ Rn to the set V ⊆ RN

admitting continuous derivatives of order k.
Lp(U, V) Set of all the function from the set U ⊆ Rn to the set V ⊆ RN

with finite Lp norm.
W1,p(U, V) Sobolev space of all the functions from the set U ⊆ Rn to the

set V ⊆ RN , where both the functions and their weak partial
derivatives belong to Lp(U, V).

respectively.
In order to account for an incompressibility constraint, we introduce the fol-

lowing group:
L+

δ (R
3) =

{
F ∈ L+(Rn) | det F = δ

}
.

Accordingly, the domain of the strain energy density ψ0 is given by L+
1 (R

3),
where the argument is the special unitary group. However, it is convenient
to introduce an extension of ψ0 to all L+(R3) and then to use the method
of Lagrangian multiplier to enforce the incompressibility constraint. Let ψ̃0 :
L+(R3)→ R such that

ψ̃0(F) = ψ0(F) ∀F ∈ L+
1 (R

3), (2.2)

a possible extension is given by

ψ̃0(F) = ψ0((det F)−1/3F).

So, the first Piola–Kirchhoff and the Cauchy stress tensors are given by

P0(F, p) =
∂ψ̃0

∂F
− pF−1 T0(F, p) = FP0(F, p),
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where p is the Lagrangian multiplier. For the sake of simplicity, in the following
we will omit the distinction between ψ̃0 and ψ0 wherever appropriate and we
denote by D either the group L+(R3), if the material is unconstrained, or the
group L+

1 (R
3), if the material is incompressible.

We denote by

I1(C) = tr(C), I2(C) =
(tr C)2 − tr(C2)

2
, I3(C) = det(C), (2.3)

the principal invariants of C, where C = FTF is the right Cauchy–Green strain
tensor.

We finally introduce a fundamental notion for the existence of minimizers in
nonlinear elastic materials, known as the non-degeneracy axiom [23]:

Axiom 2.1.1 (Non-degeneracy for a hyperelastic body). Let ψ0 be a strain energy
density, we say that ψ0 is non-degenerate ifψ0(F)→ +∞ when det F→ 0+

ψ0(F)→ +∞ when |F|+
∣∣∣F−1

∣∣∣→ +∞
(2.4)

where |F| =
√

tr(FTF).

The last condition of (2.4) indeed ensures that the hyperelastic energy goes
to infinity as soon as one of the principal invariants (2.3) goes to +∞. If the
material is incompressible, only the second equation of (2.4) applies. For the
ease of the readers, we collect all the symbols used to denote the functional
spaces in Table 2.1.

2.2 mathematical frameworks for initially stressed
materials

In this section, we summarize the basic features of two mathematical frame-
works used to model nonlinear elastic materials whose unloaded reference con-
figuration is not stress-free, namely the theory of elastic distortions and the
theory of initially stressed bodies.

2.2.1 The theory of elastic distortions

If the relation (2.1) does not hold, the material is subjected to a state of stress
in the reference configuration. A classical constitutive approach consists in as-
suming a multiplicative decomposition of the deformation gradient [181], such
that:

F = FeG. (2.5)
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Figure 2.1: Clockwise representation of the reference, the actual and the relaxed config-
uration described by the multiplicative decomposition of the deformation
gradient given by (2.5).

where G is the tensor field that describes the elastic distortion from the reference
configuration to the relaxed one, whilst Fe represents the elastic distortion that
restores the geometrical compatibility under the action of external tractions (as
depicted in Fig. 2.1). Since the underlying metric is not Euclidean whence G is
not a gradient of a deformation field, it may be impossible to attain a stress-free
configuration in the physical world. In the last decades, the distortion tensor G

has been advocated to model different biological processes, such as volumetric
growth [70], remodelling [79] and active strains [125, 200].

In physical practice, it is assumed the initial stress in the body is generated
by a distortion of the reference configuration. Consequently, the strain energy
function depends on the distorted metric, given by FG−1.

If the material is incompressible, this constraint is imposed on the elastic
tensor, whilst the distortion tensor also describes the local change of volume,
such that:

det Fe = 1 ⇒ det F = det G = δ.

Accordingly, the strain energy density of the material is given by :

ψG(F) = (det G)ψ0(FG−1). (2.6)

From standard application of the second law of the thermodynamics in the
Clausius-Duhem form, the first Piola–Kirchhoff and Cauchy stress read

PG(F) = (det G)
∂ψ0(FG−1)

∂F
, TG(F) =

1
det F

FP0(X, F). (2.7)

The theory of distortions provides a transparent explanation for the transfor-
mation law of the material properties. Let G be the material symmetry group
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of a hyperelastic material, it is defined as the set of all the tensors Q ∈ L+
1 (R

3)

such that
T(F) = T(FQ), ∀F ∈ D; (2.8)

where the response function T may eventually depend on the local distortion
G.

An equivalent definition for a hyperelastic material can be given as the set of
all Q ∈ L+

1 (R
3) such that

ψ(F) = ψ(FQ), ∀F ∈ D.

If we exploit the theory of elastic distortions, let G be the material symmetry
group of the corresponding strain energy density ψ0. It has been shown that
[78]:

ψG(F) = (det G)ψ0(FG−1) =

= (det G)ψ0(FG−1Q) =

= (det G)ψ0(FG−1QGG−1) =

= ψG(FG−1QG)

∀Q ∈ G0 (2.9)

Thus, the material symmetry group of the initially stressed material is given by

GG = G−1G0G.

Notably, GG is the conjugate group of G0 through G.
The main drawback of the theory of elastic distortions is that G has to be pro-

vided by means of a constitutive assumption. Nonetheless, since the underlying
metric may not be Euclidean, the values of its components cannot be directly
inferred in many physical problems. An experimental attempt to search for a
stress–free configuration consists in performing several (ideally infinite) cuts in
the body to release the local stresses stored inside the material [9, 198, 59, 53, 10].
Although successful in simple system models [25, 148, 57], this approach is un-
suitable when interested in investigating the effect of a generic state of initial
stress on the material response. In the following, we describe how this difficulty
can be circumvented by building a constitutive theory that explicitly depends
on the underlying spatial distribution of internal stresses.

2.2.2 The theory of initially stressed bodies

Alternatively, it can be assumed that the material response depends on both
the deformation applied on the body and on the initial stress, intended as
the existing stress field Σ in the undeformed reference configuration, i.e. the
Cauchy stress when the body is undeformed. This assumption has been dis-
cussed in [118, 119, 120], such that the material response in a point X of the
body reads

T = T(F; Σ(X)), (2.10)
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where T is the Cauchy stress. We remark that the initial stress tensor field

Σ : Ω0 → S(R3)

generally depends on the material position vector X; we omit such an explicit
notation in the following for the sake of brevity wherever appropriate. We
denote by S ∈ S(R3) the specific expression of the initial stress in a point X,
namely S = Σ(X) for a given X ∈ Ω0.

The function T : D × S(R3) → S(R3) must satisfy certain restrictions. First,
in the absence of initial stresses, the strain energy function must obey the stan-
dard requirements ensuring the existence of elastic minimizers in nonlinear
elasticity. Second, the constitutive response should be such that the Cauchy
stress is equal to the initial stress in the absence of any elastic deformations.
This is referred to as ISCC, i.e. initial stress compatibility condition, [189] and
reads:

T(I; S) = S ∀S ∈ S(R3). (2.11)

A subclass of material responses in which the strain energy function depends
only on the elastic deformation and the initial stress, but not explicitly on the
choice of the reference configuration, has been proposed in [97, 98]. Under this
constitutive assumption, it is possible to introduce another restriction called
Initial Stress Reference Independence (ISRI), stating that

T(F2F1; S) = T (F2; T(F1; S)) , ∀S ∈ S(R3). (2.12)

In this work we give a new mechanical interpretation of such a restrictive
condition and we discuss its mathematical implications for the existence of
elastic minimizers. The condition (2.12) imposes that there is no energy dissi-
pation resulting from the elastic deformation and represents a frame invariance
requirement: the deformation field solution of the elastic problem must not
depend on the choice of the reference configuration [97, 98].

If the material is hyperelastic, we can assume that the strain energy function
reads [189]:

ψ : L+(R3)× S(R3)→ R. (2.13)

Recalling the values of the material parameters are assumed to be inde-
pendent on the choice of the initially stressed configuration, the first Piola–
Kirchhoff tensor P and the Cauchy stress tensor T read:

P(F; S) =
∂ψ

∂F
(F; S),

T(F; S) =
1

det F
FP(F; S),

F ∈ L+(R3), S ∈ S(R3). (2.14)

Under the incompressibility constraint, the strain energy density is a function
such that

ψ : L+
1 (R

3)× S(R3)→ R,
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as done in (2.2), we introduce an extension ψ̃ of ψ to all L+(R3) to define the
stress tensors, namely

ψ̃(F; S) = ψ(F; S) ∀F ∈ L+
1 (R

3), ∀S ∈ S(R3); (2.15)

a possible extension is given by:

ψ̃(F; S) = ψ((det F)−1/3F; S).

The Piola–Kirchhoff and the Cauchy stress tensors are given byP(F, p; S) =
∂ψ̃

∂F
(F; S)− pF−1,

T(F, p; S) = FP(F, p; S),
F ∈ L+

1 (R
3), S ∈ S(R3).

For the sake of simplicity, we omit the difference between ψ̃ and ψ wherever
appropriate. For hyperelastic materials, we remind that (2.12) can be reformu-
lated as an equivalent condition to be imposed on the functional dependence
of the strain energy function [98]. We give further mathematical details of this
important result in the following, proving that the restriction imposed on the
strain energy density is a consequence of (2.12).

Proposition 2.2.1. Let ψ : D × S(R3) → R be a strain energy density, and assume
that the ISCC (2.11) and the ISRI conditions (2.12) hold. Then, for all F1, F2 ∈ D and
for all S ∈ S(R3), the following relation must hold:

ψ(F2F1; S) = (det F1)ψ(F2; T(F1; S)). (2.16)

Proof. For the sake of brevity, let ψ be the strain energy of a compressible mate-
rial (the incompressible case is analogous). The ISRI condition (2.12) reads

1
det F1 det F2

F2F1
∂ψ

∂F
(F2F1; S) =

1
det F2

F2
∂ψ

∂F2
(F2; T(F1; S)). (2.17)

Since F = F2F1, then, by using the chain rule, we obtain

∂ψ

∂F2
= F1

∂ψ

∂F

and the equation (2.17) becomes

∂ψ

∂F
(F2F1; S) = det F1

∂ψ(FF−1
1 , T(F1; S))

∂F
.

We find that ψ(F2F1; S) = (det F1)ψ(F2; T(F1; S)) + C. Setting F1 = I and
making use of (2.11) we find that C = 0 and we get the claim.

In the next sections, we prove the local existence of a relaxed state around
each material point and a theorem on the existence of elastic minimizers for a
strain energy of the form given by (2.13).



22 existence of minimizers for initially stressed materials

2.3 existence of a relaxed state

In the theory of elastic distortions, we must provide a constitutive form for
the tensor field that we should apply locally to each point in the reference con-
figuration to obtain the (virtual) relaxed one [181]. This theoretical framework
has strong mathematical properties. Indeed, if ψ0 is polyconvex, then also ψG

(defined in (2.6)) inherits such a property [150]. As discussed earlier, this ap-
proach is straightforward but only suitable in simple system models, since it
requires the a priori knowledge of the virtual relaxed state.

In this section we prove a theorem on the existence of relaxed configuration
using the constitutive framework of initially stressed bodies. Moreover, we
prove that, if a strain energy satisfy the ISRI (2.16) and ψ(·, 0) is polyconvex,
then ψ(·, S) is polyconvex for all S ∈ S(R3).

First, we give the following statement of the non-degeneracy axiom for this
class of materials.

Axiom 2.3.1 (Non-degeneracy for an initially stressed body). Let ψ : L+(R3)×
S(R3) → R be the strain energy density of an initially stressed body. We say that ψ

is non-degenerate ifψ(F; S)→ +∞ when det F→ 0+,

ψ(F; S)→ +∞ when |F|+
∣∣∣F−1

∣∣∣→ +∞.
∀S ∈ S(R3). (2.18)

We now derive the existence of a point-like relaxed state associated to each
point of the initially stressed configuration. In [119], a stress-free virtual state is
defined for each material point in the initially stressed configuration by consid-
ering the limiting behavior as the radius of the spherical neighborhood tends
to zero. Its existence required the following hypotheses: Σ ∈ C1(Ω0,S(R3)),
ψ = ψ(F; Σ(X)) being twice differentiable with respect to both arguments, and
the distortion from the neighborhood of each point to the free state to be once
differentiable in space. Here we are going to obtain a proof of existence of a
virtual state using weaker hypotheses.

Theorem 2.3.1 (Existence of a relaxed state). Let ψ be a non-degenerate strain
energy density in the sense of (2.18). We also assume that ψ(·, S) is at least C1 and
proper, i.e. it is not identically equal to +∞, for all S ∈ S(R3).

Then, for each X ∈ Ω0, given Σ(X) ∈ S(R3), there exists a local distortion GΣ(X)

such that
T(GΣ(X); Σ(X)) = 0.

Proof. Let ψ be the strain energy of a compressible material.
We denote by fΣ(X) = ψ(·; Σ(X)). The domain of the function fΣ(X) is given

by D = L+(R3). Thus, from the non-degenericity axiom (2.3.1), we get

fΣ(X)(F)→ +∞ when det F→ 0+ or |F| → +∞. (2.19)
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Since the function fΣ(X) is continuous and proper, it must be bounded from
below, hence there exists a value m ∈ R such that fΣ(X)(F) > m for all F.
Moreover, there exists a value M > m such that

f−1
Σ(X)

(
[m, M] ∩ Im( fΣ(X))

)
= U 6= ∅, U ⊂ L+(R3). (2.20)

where with f−1
Σ(X)

(A) we denote the pre–image of the subset A ⊆ Im( fΣ(X))

through the function fΣ(X).
The non-empty set U is bounded as a direct consequence of the coercivity

property expressed in (2.18). Thus, there exists a minimum of fΣ(X) in Ū, where
Ū is the closure of U.

The tensor that realizes such a minimum may be not unique as exposed in
the following Remark 2.3.1. Let us denote with GΣ(X) one of them. Since (2.19)
holds, the tensors GΣ(X) cannot belong to the boundary of the set L+(R3) and
it is a critical point for ψ(·; Σ(X)).

From (2.14), we get

T(GΣ(X); Σ(X)) = 0. (2.21)

If the material is incompressible, following the same argument, there exists a
tensor GΣ(X) such that

GΣ(X) ∈ arg min
F∈D

fΣ(X)(F)

where in this case D = L+
1 (R

3). We define a new function ψ̂ such that{
ψ̂ : L+(R3)×R× S(R3)→ R

ψ̂(F, p; S) = ψ̃(F; S)− p(det F− 1)

where ψ̃ is an extension of ψ as defined in (2.15).
Since GΣ(X) is a minimum for ψ in L+

1 (R
3), there exists a pΣ(X) ∈ R such that

(GΣ(X), pΣ(X)) is a critical point for ψ̂ [76], so that

∂ψ̂

∂F
(GΣ(X), pΣ(X); Σ(X)) =

∂ψ̃

∂F
(GΣ(X); Σ(X))− pΣ(X)G

−T
Σ(X)

= 0,

and thus T(GΣ(X), pΣ(X); Σ(X)) = 0. This concludes the proof.

Remark 2.3.1. Given an initial stress tensor, this Theorem implies that there exists a
tensor GΣ(X) that locally maps the body to an unstressed state. Such a distortion is
not unique in general: if Q belongs to the material symmetry group of ψ, then also
T(GΣ(X)Q; Σ(X)) = 0.

Remark 2.3.2. The collection of local maps

Ĝ[Σ](X) := GΣ(X),

which transform each point of the reference configuration into a point in the local un-
stressed virtual state, satisfies Ĝ[Σ] ∈ B(Ω0, D), where B(Ω0, D) denotes the set of
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all the bounded function f : Ω0 → D. Moreover, the tensor map Ĝ[Σ] may not be
geometrically compatible, i.e. there could not exist any differentiable vector field ϕĜ

such that GradϕĜ = Ĝ[Σ]. In this case, there does not exist a deformation that maps
the reference configuration of the residually stressed material into a relaxed one. In
fact, assuming that the reference configuration is simply connected, such a deformation
exists if and only if

rot Ĝ[Σ] = 0.

In the following, we call Ĝ[Σ] the relaxing map.

Remark 2.3.3. By simple application of the mean stress theorem [101], in the absence
of surface tractions and body forces we obtain

1
|Ω0|

∫
Ω0

Σ dX =
1
|Ω0|

(∫
∂Ω0

X ⊗ (ΣN) dS−
∫

Ω0

X ⊗Div Σ dX
)
= 0

so that the mean value of the initial stress tensor is zero. Thus, the Cartesian compo-
nents of the residual stress tensor are necessarily spatially inhomogeneous whenever
Σ 6= 0 [110]. Accordingly, the functional form of the map Ĝ[Σ] is also inhomogeneous.
A homogeneous initial stress Σ can only exist if surface tractions or body forces are
applied.

Remark 2.3.4. Note that in the case in which Σ has singular values over a set S∞ ⊂ Ω0

we are requiring the hypothesis that ψ(·; Σ(X)) remains a proper function, i.e. it is not
identically equal to +∞, when X ∈ S∞. Due to the continuity of ψ(·, S), this ensures
that Ĝ[Σ](X) is bounded when X ∈ S∞, as it will be shown in Section 2.5.

2.4 existence of elastic minimizers for initially
stressed bodies

In this section, we prove that if the strain energy density ψ satisfies the as-
sumption of Theorem 2.3.1, then ψ satisfies the ISRI (2.16) if and only if it is
expressible using the theory of elastic distortion (2.6).

Theorem 2.4.1. Let ψ satisfy the hypotheses of Theorem 2.3.1 and the ISCC condition.
We denote by ψ0 the strain energy of the material in the absence of initial stresses, being

ψ0(F) = ψ(F; 0).

Then, the function ψ satisfy the ISRI (2.16) if and only if we can express it as

ψ(F; Σ(X)) = (det Ĝ[Σ](X))ψ0(FĜ[Σ](X)−1) = ψĜ[Σ](X)(F)

where Ĝ[Σ](X) is a function such that

T(Ĝ[Σ](X); Σ(X)) = 0.
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Proof. It is proved in [98] that the strain energy ψĜ[Σ](X) satisfies the ISRI.
Let ψ be a strain energy which satisfies the ISRI and such that ψ(F; 0) =

ψ0(F). The existence of the function Ĝ[Σ](X) is guaranteed by the Theorem
2.3.1.

Omitting the explicit dependence on X for the sake of compactness, we ob-
tain:

ψ(F; Σ) = ψ(FĜ[Σ]−1Ĝ[Σ]; Σ) =

= (det Ĝ[Σ])ψ(FĜ[Σ]−1, T(Ĝ[Σ]; Σ)) =

= (det Ĝ[Σ])ψ(FĜ[Σ]−1, 0) =

= (det Ĝ[Σ])ψ0(FĜ[Σ]−1) = ψĜ[Σ](F)

that concludes the proof.

We also introduce the following useful Lemma:

Lemma 2.4.1. Let ψ(F; Σ(X)) be a strain energy density satisfying the hypotheses
of Theorem 2.3.1, the ISRI and such that ψ(F; 0) is polyconvex. Then ψ(F; Σ(X)) is
polyconvex for all X ∈ Ω0.

Proof. From the Theorem 2.4.1, we get

ψ(F; Σ(X)) = (det Ĝ[Σ](X))ψ(FĜ[Σ](X)−1; 0).

Following the Remark 2.3.2, we have that Ĝ[Σ] ∈ B(Ω0,L+(R3)) and the
Lemma is a direct consequence of the Lemma 6.5 in [150].

Indeed, under some regularity assumptions, if the strain energy density ψ is
polyconvex in the relaxed case, then it is polyconvex for all Σ : Ω0 → S(R3). It
is now possible to prove a theorem of existence of elastic minimizers for initially
stressed bodies.

Theorem 2.4.2 (Existence of elastic minimizers). Let Ω0 ⊂ R3 be a connected,
bounded and open subset with a regular boundary and let ψ(F; Σ(X)) be a strain
energy density for an initially stressed material, with ψ(·; Σ(X)) ∈ C1(L+(R3)) and
ψ(F; ·) ∈ C0(S(R3)). Let Σ : Ω0 → S(R3) be a measurable function.

We assume that:

(i) (initial stress independence and non–degeneracy) ψ fulfills the hypotheses of The-
orem 2.3.1 and the ISRI condition (2.16);

(ii) (polyconvexity of the relaxed energy) in the absence of initial stresses, the strain
energy density ψ(F; 0) is polyconvex with respect to F, namely there exists a
convex function h : L(R3)×L(R3)× (0, +∞)→ R such that

ψ(F; 0) = h(F, Cof F, det F)

(iii) (coercivity of the relaxed energy) there exist α > 0, β ∈ R, p ≥ 2, q ≥ p/(p−
1), r > 1 such that:

h(F, C, δ) ≥ α(|F|p + |C|q + δr) + β, ∀F, C ∈ L(R3), δ > 0.
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We assume that there exist two disjointed subset Γ0, Γ1 such that ∂Ω0 = Γ0 ∪ Γ1 and
such that |Γ0| > 0. Let f : Ω0 → R3 and t : Γ1 → R3 measurable such that the
application

L[ϕ] =
∫

Ω0

f ·ϕdX +
∫

Γ1

t ·ϕdS

is continuous on W1,p(Ω0, R3). Finally let ϕ0 : Γ0 → R3 be a measurable function
and such that the set

U =
{

ϕ ∈W1,p(Ω0, R3) | Cof Gradϕ ∈ Lq, det Gradϕ ∈ Lr,

det Gradϕ > 0 a.e. in Ω0, ϕ = ϕ0 on Γ0

}
. (2.22)

is non-empty.
Then, defining the functional F : U → R∪ {+∞} as

F [ϕ] =
∫

Ω0

ψ(Gradϕ; Σ(X))dX − L[ϕ]

and assuming that infF [ϕ] < +∞, there exists an elastic minimizer

min
ϕ∈U
F [ϕ].

Proof. Using the Theorem 2.4.1, from (i) we have that

ψ(F; Σ(X)) = (det Ĝ[Σ](X))ψ0(FĜ[Σ](X)−1) =: Ψ(X, F). (2.23)

We prove the claim as a direct application of the Theorem 7.3 in [23]. Here we
only sketch the proof, pointing to [23] for the details.

Since Σ is measurable and ψ(F, ·) is continuous for all F, then Ψ(X, F) is a
Carathéodory function, i.e. it is continuous with respect to F a.e. in Ω0 and
measurable in Ω0 for all F ∈ L+(R3). Hence, the functional F is well defined.

By simple application of Lemma 2.4.1 and (ii), Ψ(X, F) is polyconvex a.e. in
Ω0. The coercivity of F is enforced a.e. in Ω0 by the hypothesis (iii), the bound-
edness of Ĝ[Σ] in Remark 2.3.2 and the continuity of L in W1,p(Ω0, R3). The
non-degeneracy of Ψ(X, F) for det F → 0+ is given by (i). Hence, by applying
the standard methods of the calculus of variations, we can show the existence
of infimizing sequences ϕk ∈ U which admit weakly converging subsequences
to a limit point ϕ ∈ U. Since the functional F is lower semicontinuous as a
consequence of its policonvexity, the weak limit ϕ ∈ U minimizes F .

Such a Theorem is a standard application of Ball’s theorem on the existence
of solutions in nonlinear elasticity [23]. The main result obtained in this section
is that the ISRI automatically guarantees that the polyconvexity is preserved for all the
initial stress fields if it holds for Σ = 0. Conversely, if we do not assume the ISRI,
the polyconvexity of the strain energy density should be imposed by a suitable
constitutive restriction on the dependence with respect to the initial stress field.
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According to the Theorem 2.4.1, imposing the ISRI condition is equivalent to
require that the initial stress tensor Σ is generated by an elastic distortion given
by Ĝ[Σ].

Conversely, if the ISRI does not hold, the dependence of the stored elastic
energy on the choice of the reference configuration is not solely related to the
the corresponding variation of the initial stress. Thus, the material properties
may depend on the specific initial stress field.

For the sake of clarity, let us investigate how the material symmetry group
depends on the presence of an initial stress within the body. We denote by G0

the material symmetry group of the relaxed state around a material point X.
In view of Theorem 2.4.1 and following the same computation of (2.9), if the
strain energy fulfills the ISRI condition for a generic initial stress field S and for
all Q ∈ G0, we get that the material symmetry group GS of the initially stressed
body is given by

GS = G−1
S G0GS,

where the tensor GS is defined in Theorem 2.3.1. Hence, the group GS is conju-
gated to the group G0 through the tensor GS, exactly as in the theory of elastic
distortions (2.9).

Conversely, we now consider a strain energy of the form

ψ(F; S) = f (I1(C)− 3) + g(J1 − tr S) (2.24)

where J1 = tr(SC), and the function f and g must be such that the energy
density (2.24) satisfies the ISCC (2.11) and g is non-constant. If the material
is initially unstressed (i.e. S = 0), the strain energy density (2.24) defines a
general isotropic nonlinear elastic response and the material symmetry group
is given by

G0 = O+(R3).

However, if we consider an initial stress S = αM ⊗ M, where M is a unit
vector, we observe a change in the nature of the material symmetry group. In
fact, considering that

tr(SQTCQ) = tr(SC) ∀F ∈ D ⇐⇒ QM = M.

The material symmetry group GS is given by

GS =
{

Q ∈ O+(R3) | QM = M
}

,

so that the material is not anymore isotropic but transversely isotropic.
Thus, if the material does not satisfy the ISRI, the material symmetry group
GS is not conjugated with G0 and it is not possible to obtain the material symme-
try group G0 by an elastic distortion of the material. In other words, if the ISRI
condition is not fulfilled, the body may change its material symmetry group
depending on the imposed initial stress field, leading to a modification of the
material response.
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2.5 an illustrating example: the relaxed state of
a soft disc with anisotropic initial stress

As an example, we consider a disc of radius R0 composed of an incompress-
ible nonlinear elastic material subjected to planar strains and initial stresses. Let
(ER, EΘ) and (er, eθ) be the cylindrical vector basis in Lagrangian and Eulerian
coordinates respectively. We assume that the initial stress is axis-symmetric,
having the following general form

Σ =

(
α + β log

(
R
R0

))
ER ⊗ ER +

(
γ + β log

(
R
R0

))
EΘ ⊗ EΘ. (2.25)

The body in the reference configuration must obey the linear momentum
balance, that in the absence of bulk forces reads

Div Σ = 0. (2.26)

Since the residual stress tensor Σ depends only on the radial coordinate R, (2.26)
reduces to the following scalar equation

dΣRR

dR
+

ΣRR − ΣΘΘ

R
= 0;

that is fulfilled if and only if
β = γ− α.

If the disc is not subjected to any external traction, then ΣRR(R0) = 0, so that
α = 0. We now aim at calculating the elastic minimizer corresponding to this
particular choice of the initial stresses. Let ψ(F; Σ) be the strain energy density
of the initially stressed disc. We assume that in the absence of residual stresses,
the material behaves as a general isotropic material, such that

ψ(F; 0) = f (I1(C)− 2)

where f : [0,+∞[→ R is a convex function of its scalar argument. In view
of Theorem 2.4.1, ψ(F; Σ) = ψ(FĜ−1[Σ]; 0). Using the polar decomposition
Ĝ[Σ] = RUĜ where the tensor R is a proper orthogonal tensor and UĜ is the
corresponding right stretch tensor, we denote the metric tensor of the initial
elastic distortion by

B̃ = Ĝ[Σ]−1Ĝ[Σ]−T = U−2
Ĝ

, (2.27)

where λĜ is the principal eigenvalue of UĜ. Accordingly, the ISCC condition
(2.11) imposes:

Σ = 2 f ′(I1(B̃)− 2)B̃− pΣI (2.28)

where pΣ acts as the Lagrange multiplier enforcing the incompressibility of the
metric tensor. From the expression of the initial stress (2.25) and the equations
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(2.27)-(2.28), we get that UĜ is diagonal with respect to the cylindrical vector
basis, thus

UĜ = diag(λĜ, λ−1
Ĝ
).

Considering that
tr(Ĝ[Σ]−TFTFĜ[Σ]−1) = tr(B̃C)

by enforcing the ISRI condition we can write the strain energy density as

ψ(F; Σ) = f (tr(B̃C)− 2).

By applying the trace and the determinant operator on both sides of (2.28), we
obtain respectivelypΣ = f ′(I1(B̃)− 2)I1(B̃)−

I1(Σ)

2
I3(Σ) + I1(Σ)pΣ + p2

Σ = 4( f ′(I1(B̃)− 2))2
(2.29)

where I1(Σ) = tr Σ and I3(Σ) = det Σ. After substituting in (2.29) the first
equation into the second one, we get

I1(Σ)2

4
− I3(Σ) = ( f ′(I1(B̃)− 2))2(I1(B̃)

2 − 4) (2.30)

The term I1(Σ)2

4 − I3(Σ) = (ΣRR−ΣΘΘ)
2

4 is always positive. Since f (x) is strictly
convex with a minimum in x = 0, the rhs of (2.30) is a positive–definite, strictly
monotone function of I1(B̃) Thus, (2.30) is invertible and the principal eigen-
value λĜ = λĜ(ΣRR, ΣΘΘ) is given by:((

λ2
Ĝ
+ λ−2

Ĝ

)2
− 4
)
( f ′(λ2

Ĝ
+ λ−2

Ĝ
− 2))2 =

(ΣRR − ΣΘΘ)
2

4
. (2.31)

We multiply each side of (2.28) by C on the right, by applying the trace operator
we get

tr(B̃C) =
J1 + pΣ I1

2 f ′(λ2
Ĝ
+ λ−2

Ĝ
− 2)

.

Accordingly, the strain energy function ψ(F; Σ) for an initially stressed isotropic
material reads

ψ(F; Σ) = f

(
J1 + pΣ I1

2 f ′(λ2
Ĝ
+ λ−2

Ĝ
− 2)

− 2

)
. (2.32)

Note that the relaxing map corresponding to (2.32) is the map Ĝ[Σ] as defined
by (2.27) and (2.28), since we have written ψ(F; Σ) as ψ(FĜ−1[Σ]; 0).

A mapping whose deformation gradient corresponds to UĜ is given by

r = λĜR, θ =
Θ
λ2

Ĝ

, z = Z (2.33)
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This relaxing map corresponds to a controllable deformation for isotropic
materials, meaning that it can be supported by surface tractions alone at equi-
librium. It describes the opening of the initial disc into a circular sector, corre-
sponding to non-homogeneous displacements and homogeneous strains [193,
192]. In fact, we remark that (2.33) does not globally map a physically compati-
ble configuration even if the Riemann curvature of the underlying metric tensor
is zero. This can be easily checked since the curl operator of the deformation
tensor corresponding to (2.33) is not zero if λĜ 6= 1. From (2.31), this condition
implies ΣRR 6= ΣΘΘ, or equivalently γ 6= 0. Therefore, the relaxing map given
by (2.33) is a non-uniform controllable stress state with uniform deviatoric in-
variants. The latter is the necessary condition for stress controllability given in
[45].

2.6 discussion and concluding remarks

This work proved novel insights on the link between the existence of elas-
tic minimizers and the constitutive assumptions for initially stressed materials
subjected to finite deformations.

Assuming a strain energy density in the form ψ(F; Σ) and a non-degeneracy
axiom, we clarified the mathematical implications of assuming the ISRI con-
dition as a constitutive restriction. Theorem 2.3.1 proves the existence of a
relaxed state given by the tensor function Ĝ[Σ] as an implicit function of the
initial stress distribution. The tensor Ĝ[Σ] is generally not unique, and can
be transformed accordingly to the symmetry group of ψ. Moreover, Theorem
2.4.1 proves that each strain energy density function ψ(F; Σ) that satisfies the
ISRI condition can be written as ψ(F; Σ) = (det Ĝ[Σ])ψ(FĜ[Σ]−1; 0). Thus, we
prove that the material symmetry group of the initially stressed material satis-
fying the ISRI condition locally changes as we vary Σ according to the theory
of elastic distortions.

Furthermore, we have used the previous results of Ball to prove the exis-
tence Theorem 2.4.2 of the elastic minimizers for a strain energy density in
the form ψ(F; Σ), that satisfies the ISRI condition under suitable constitutive
restrictions. Such a result is based on the proof that the polyconvexity of the
strain energy density of an initially stressed material is automatically inherited
for all Σ if it holds in the case Σ = 0, given some necessary conditions on the
non-degeneracy and the regularity of ψ(·, Σ).

Whilst the theory of elastic distortion requires an a priori choice of the virtual
incompatible state, the constitutive restrictions on ψ(F; Σ) ensure the existence
of the elastic minimizers corresponding to the physically observable distribu-
tion of the initial stresses. In an illustrative example, we have shown how to
calculate the relaxed state of an incompressible isotropic disc as a function of
the axis-symmetric distribution of initial stresses.
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We finally remark that the ISRI condition should be assumed for the ma-
terials that do not undergo a change in the underlying material structure, so
that the initial stresses arise only in response to an elastic distortion. This hap-
pens, for example, for the residual stresses generated by a differential growth.
By using the classification proposed by Epstein [78], the ISRI condition is in-
deed well suited for modeling the growth or the remodelling of a soft material,
namely a change of shape that does not affect the material properties and the
microstructure of the material. On the contrary, when there is a modification
of the microstructure that involves a change in the material properties, the ISRI
condition would be physically flawed and other constitutive choices should be
done.

Our results prove useful guidelines for the constitutive restrictions on the
strain energy densities of initially stresses materials, having important applica-
tions for the study of the morphological stability and wave propagation anal-
ysis in soft tissues [59], and the non-destructive evaluation of residual stresses
generated by a differential growth in biological materials [132, 75].





3
M O D E L L I N G O F A C T I V E
P H E N O M E N A I N B I O LO G I C A L
T I S S U E S

In this Chapter, we aim at modelling active phenomena in living matter, fo-
cusing the attention on two important processes: the active contraction of mus-
cle tissue and the growth of biological materials.

The work is organized as follows: in Section 3.1 we compare the experi-
mental results on the uniaxial traction of a skeletal muscle with the theoretical
prediction of the active strain model, more into detail in Section 3.1.1 we review
the active strain approach and its mathematical properties, in Section 3.1.2 we
compare the experimental data of Hawkins and Bey [104] with the predicted
stress-stretch curves predicted by the active strain approach. In Section 3.1.3
we propose an alternative model based on the mixture active strain method.

In Section 3.2, we mathematically describe solid tumour growth exploiting
a non-linear poroelastic model: in Section 3.2.1 we review the model of tu-
mour growth, discussing the differences between fluid-like models and solid-
like models. In Section 3.2.2 we discuss the limitations of the fluid models
of tumours. In Section 3.2.3, we introduce the poroelastic model and in Sec-
tion 3.2.4the growth law which includes a mechanical feedback. In Section 3.2.5
we enrich the mechanical model describing the dynamics of the nutrient of the
cells. Finally, in Section 3.2.6 we present the results of the numerical simula-
tions of the chemo–mechanical model, comparing them with in vitro and ex
vivo experiments.
The results of this chapter lead to the following publications:

D. Riccobelli and D. Ambrosi. Activation of a muscle as a mapping of stress
strain curves. Submitted
D. Ambrosi, S. Pezzuto, D. Riccobelli, T. Stylianopoulos, and P. Ciarletta. Solid
tumors are poroelastic solids with a chemo-mechanical feedback on growth.
Journal of Elasticity, 129(1-2):107–124, 2017

3.1 activation of a muscle as a mapping of stress-
strain curves

An important example of active material is provided by the muscle tissue,
which can contract in presence of an electrical stimulus. A correct constitutive
modeling of both the active and passive behavior is crucial for several biome-
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chanical systems, such as the modelization of the heart and of the skeletal
muscles.

A mathematical description of the muscle tissue poses several challenges.
First, nonlinear constitutive laws are required since a muscle can undergo large
deformations. Moreover, a muscle, seen as a material, is strongly anisotropic
due to the presence of muscle fibers; in particular it can be suitably represented
as transversely isotropic (as in the case of the skeletal muscle) or orthotropic
material (as happens in the myocardium, due to the different orientation of the
fibers). Furthermore, the process of activation of a muscle is very complex and
involves several mechanisms at the microstructural level [46, 173].

A robust constitutive model accounting for the ability of a muscle to contract
is far from being established. During the last few decades, several methods
have been developed to model the active behavior of muscles in the framework
of continuum mechanics [149, 9]. The most popular one is the so called active
stress [9]. Such an approach involves an additive split of the total stress into a
passive and an active component [194, 160, 152]. Another approach is the active
strain, a technique based on the theory of elastic distortions. In a biomechani-
cal context, such an approach was first introduced by Kondaurov and Nikitin,
and further developed by Taber and Perucchio [125, 200, 149]. The active strain
has been employed in several models (e.g. [52, 184, 153, 165]) due to its ro-
bust mathematical properties and the clear physical interpretation: the muscle
contraction corresponds to a geometrical remodelling of the body [78, 175].

While the active strain approach guarantees some suitable mathematical prop-
erties, the flexibility of the active stress in general allows a better accordance
with the experimental results [9, 184, 105, 93]. Nevertheless, the preservation of
the well posedness of the mathematical problem is not always guaranteed by
the latter approach [162, 9] and could manifest itself in unexpected numerical
issues. The active stress formulation is so general that includes the active strain
as a particular case [93].

The aim of this Section is to compare experimental data on the uniaxial iso-
metric activation of a skeletal muscle [215, 104] with a stress field predicted by
the active strain theory. We show that a plain active strain approach is intrinsi-
cally unable to reproduce experimental data, but suitable modifications can be
effective in this respect.

3.1.1 The active strain approach

We denote by L+(R3) the set of all the linear maps L : R3 → R3 with pos-
itive determinant. Moreover, we indicate with U+(R3) the subset of L+(R3)

composed of all the linear applications L such that det L = 1
Let Ω0 and Ωe be the reference and the actual configuration of an elastic body

respectively. We denote with X ∈ Ω0 the material position vector and with
ϕ : Ω0 → Ωe the motion function. We denote by F = Gradϕ the deformation
gradient tensor.
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We assume that the material is incompressible and hyperelastic and we de-
note by ψ0 the strain energy density of the passive material. Thus, the first
Piola–Kirchhoff stress of the passive material is given by

P0 =
∂ψ0

∂F
− pF−1, (P0)ij =

∂ψ0

∂Fji
− pF−1

ij ; (3.1)

where p is the Lagrangian multiplier that enforces the incompressibility con-
straint det F = 1.

When the body is activated, we assume that the deformation gradient admits
a multiplicative decomposition of the form

F = FeFa, (3.2)

where Fa accounts for the local distortion of the material due to the activation.
Such an approach is inspired by the theory of elastoplasticity, the decompo-

sition (3.2) is usually referred as Kröner-Lee decomposition; to the best of our
knowledge, its first application in the field of biomechanics is due to Taber and
Perucchio [200].

The distortion field Fa : Ω0 → U+(R3) is to be constitutively prescribed. As
far as it concerns the activation of a muscle, we assume that Fa determines no
variation in the local volume, hence det Fa = 1.

The activation-induced distortion of the body can lead to a geometrically
incompatible configuration, namely there may not exist a vector map such that
Fa is its gradient: Fa is not integrable. The integrability of F is restored by
another component Fe that accounts for the elastic distortion of the body [181].

The tensor field Fe describes the elastic “deformation” due to the presence of
external and internal forces and to the restoration of the geometrical compati-
bility. Hence, the strain energy of the activated material ψ : Ω0 → Ωe is given
by

ψ(F) = ψ0(Fe) = ψ0(FF−1
a ), (3.3)

and the first Piola–Kirchhoff stress tensor reads

P =
∂ψ

∂F
− pF−1 = F−1

a
∂ψ

∂Fe
− pF−1.

The active strain approach possesses nice mathematical properties. In fact, if
the strain energy density ψ0 is rank-one convex or polyconvex, then ψ preserves
such properties [150, 9].

3.1.2 Activation as a linear mapping

The aim of this section is to compare the experimental results on the isomet-
ric uniaxial activation of a skeletal muscle with the stress fields predicted by
the active strain approach. We will focus on the work of Hawkins and Bey
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[104] who performed traction experiments on a rat tibialis anterior muscle in
isometric conditions.

We denote the local direction of the fibers by the vector field M with |M| = 1.
A common choice for Fa inspired by the microstructural architecture, is given
by

Fa = (1− γ)M +
1√

1− γ
(I−M), (3.4)

where 0 ≤ γ < 1 is a parameter that describes the microstructural degree of
contraction of the muscle (0 corresponds to the relaxed muscle), M = M ⊗
M and ⊗ denotes the diadic product. By performing such a choice for the
active strain Fa we assume that the contraction of the sarcomere preserves the
cylindrical symmetry along the axis identified by the direction M.

Let us denote with Fλ the deformation gradient that corresponds to the uni-
axial deformation along the anisotropic direction M, i.e.

Fλ = λM +
1√
λ
(I−M). (3.5)

Making use of (3.1), we can define the function φ as

φ (λ) := ψ0(Fλ),

in the passive case. Because of the specific form of the active deformation (3.4),
in a uniaxial deformation (3.5) the strain energy density takes the specific form

ψ(Fλ) = φ

(
λ

1− γ

)
. (3.6)

Differentiating ψ(Fλ) with respect to λ, we obtain the principal stress in the
direction M:

PM(λ, γ) =
dψ(Fλ)

dλ
, (3.7)

so that, exploiting the relation (3.6) and applying the chain rule, we get

PM(λ, γ) =
1

1− γ
φ′
(

λ

1− γ

)
.

Out of a rescaling of the strain and stress, the stress-stretch relation P(λ, γ) is
therefore completely characterized by its passive behaviour. In fact, if we know
the passive response

PM(λ, 0) =
dψ0(Fλ)

dλ
= φ′(λ),

then if the muscle is activated we can obtain PM(λ, γ) by rescaling the variable
of the function φ(λ).

Indeed, from (3.7) we can observe that

PM(λ, γ) =
1

1− γ
φ′
(

λ

1− γ

)
=

1
1− γ

PM

(
λ

1− γ
, 0
)

. (3.8)



3.1 activation of a muscle as a mapping of stress-strain curves 37

Thus, the stress-stretch curve of the activated muscle can be straightforwardly
obtained by rescaling the stress and the strain variables by the same factor
(1− γ)−1.

Unfortunately, such a representation of the activation process is too restric-
tive to reproduce the experimental results obtained from measuring PM in a
tetanized muscle [215, 104]. Hawkins and Bey measured the stress-strain rela-
tion of the passive muscle and of the tetanized muscle in isometric conditions
(Fig. 3.1). In fact, from the experimental plot in Fig. 3.1 (top) we observe that
the passive material exhibits a strain hardening effect when λ ≥ 1.3. When
the muscle is activated, the curve stress vs strain has a completely different
slope: there is a change of concavity and a strain hardening for λ ≥ 1.3 and no
self-similar transformation reproduces it.

A qualitative attempt to fit of the physiological plot using the active strain
approach is obtained by mapping the experimental curve of the passive muscle
in Fig. 3.1 (top) into the activated one by the rescaling defined by the equation
(3.8) according to the following procedure. Every point of the stress-stretch
plane (λ0, P0) that belongs to the stress-stretch curve of the passive material
can be mapped on the activated curve making use of (3.8). Indeed, we get that
the rescaling

(λ, P) =
(

λ0(1− γ),
P0

1− γ

)
, (3.9)

provides the stress-stretch curve of the activated material.
Such a rescaling is applied to the passive curve for several γ and the results

are shown in Fig. 3.1 (bottom). It is apparent that in this way it is not possible
to obtain a stress-stretch curve that fits the experimental data for the contracted
muscle. In fact, the strain hardening is anticipated as we increase γ and the
curve obtained interpolating the experimental data is not convex for 0.7 < λ <

1.2. Thus, the active strain approach cannot reproduce the uniaxial deformation
of a contracted skeletal muscle.

We remark that the result of this section do not assume any specific strain
energy function to model the passive behavior of the muscle; it is just a rescaling
of an experimental curve. Our unique assumption is that the activation of the
muscle reads as a contraction along the direction of the fibers that preserves
volumes, as in equation (3.4).

3.1.3 An alternative approach: the mixture active strain approach

A possible alternative method is to model the muscle as a material composed
of two solid phases, only one of them actively contributing to the muscle con-
traction.

Let us consider a strain energy density such that

ψ = ψiso + ψani
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Figure 3.1: (top) Stress-stretch data obtained from the uniaxial traction experiments of
Hawkins and Bey [104]. (bottom) Stress-stretch curves of the uniaxial trac-
tion obtained from the passive data by assuming the active strain approach
and using (3.9), here γ varies from 0 up to 0.4 by steps of 0.05. The arrow
denotes the direction along which γ grows.

where ψiso is the isotropic part of the strain energy whilst ψani describes the
contribution provided by the fibers. We assume that ψiso is only passive and
does not give any contribution to the active behavior of the muscle.

The only part of the energy that can provide an active contribution is the
function ψani. Thus, we describe the muscle as a mixture of passive (like elastin,
randomly distributed collagen) and active materials (like the sarcomeres). We
call this approach mixture active strain [107, 94, 159, 93].
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The first Piola–Kirchhoff stress now reads

P =
∂ψiso

∂F
+

∂ψani

∂F
− pF−1

while the principal stress in the direction M, denoted by PM , produced by the
deformation Fλ is

PM(λ, γ) = Piso
M (λ) + Pani

M (λ, γ)

where

Piso
M (λ) =

dψiso(Fλ)

dλ
Pani

M (λ, γ) =
dψani(FλF−1

a )

dλ
.

In analogy with (3.8) we can introduce the following representation

Pani
M (λ, γ) =

1
1− γ

Pani
M

(
λ

1− γ
, 0
)

.

Hence, the purely active contribution arising from the contraction of the muscle
is due to the anisotropic contribution and it is given by

Pact
M (λ, γ) = PM(λ, γ)− PM(λ, 0) =

1
1− γ

Pani
M

(
λ

1− γ
, 0
)
− Pani

M (λ, 0).

Such a function is expected to fit the experimental data of Hawkins and Bey
[104] relative to the active contribution to the stress PM (see Fig. 3.1). Indeed,
setting γ = γmax corresponding to the maximal contraction of the sarcomere,
we get that Pact

M (λ, γmax) should reproduce the difference between the stress
generated by the tetanized muscle and the stress generated by the passive body:
to perform this comparison, we have to chose a specific strain energy density.

Let us introduce the following invariants

I1 = tr C, J = det F, I4 = tr(CM),

where C = FTF is the right Cauchy-Green tensor.
We choose to model the isotropic part of the muscle as a Gent material [90],

so that the strain energy density is given by

ψiso(F) = −
µImax

2
log
(

1− I1 − 3
Imax

)
(3.10)

where µ is the shear modulus and Imax is a parameter that sets the maximum
value reachable by I1.

The anisotropic part of the strain energy is instead given by

ψani(F) = α
(

4
√

I4 − 1
)2

. (3.11)

Thus the fibres contribute to the strain energy only if there is a deformation in
the direction M. We remark that the constitutive choice (3.10), while specific,
is very popular in the mechanics of soft tissues [90, 115, 116, 169, 170]. The
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anisotropic component of the strain energy (3.11) usually in literature involves
the square root I4 [48]. In this work we adopt a power law with a smaller
exponent (fourth order root) to account for the reported change in convexity of
PM versus λ (see Fig. 3.1 top).

The total strain energy of the activated material is hence given by

ψ(F) = ψiso(F) + (det Fa)ψani(FF−1
a ) (3.12)

where Fa is given by (3.4).
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Figure 3.2: Plot of the normalized principal stresses Piso
M /µ (top) and Pani

M /α (bottom).
The parameter Imax has been set equal to 1 and γ varies between 0 and 0.5
by steps of 0.05.
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Figure 3.3: Plot of PM when µ = 5 kPa, Imax = 0.45, α = 100 kPa and γ varies from 0
to 0.5 with steps of 0.05.

Thus, for det Fa = 1 the Piola–Kirchhoff stress tensor reads

P(F) = Piso(F) + F−1
a Pani(FF−1

a )− pF−1,

where

Piso(F) =
∂ψiso

∂F
= µ

(
1− I1 − 3

Imax

)−1

FT,

Pani(F) =
∂ψani

∂F
= α

4
√

I4 − 1
4
√

I3
4

MFT.

In particular, in the case of a uniaxial deformation in the direction M, we can
compute the principal stresses PM and Pani

M in the direction M, namely

Piso
M (λ) =

dψiso(Fλ)

dλ
= µ

(
1− λ2 + 2λ−1 − 3

Imax

)−1 (
λ− λ−1

)
Pani

M (λ, γ) =
dψani(FλF−1

a )

dλ
=

α

1− γ

√
λ

1−γ − 1√
λ

1−γ

.

Thus, the total principal stress

PM(λ, γ) = Piso
M (λ) + Pani

M (λ, γ)

is given by

PM(λ, γ) = µ

(
1− λ2 + 2λ−1 − 3

Imax

)−1 (
λ− λ−1

)
+

α

1− γ

√
λ

1−γ − 1√
λ

1−γ

.
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In Fig. 3.2 we plot the principal stresses Piso
M (λ) and Pani

M (λ, γ) normalized
with respect to µ and α, respectively. In Fig. 3.3 we plot the total principal
stress PM(λ, γ) where we set µ = 5 kPa, Imax = 0.45, α = 100 kPa. Increasing
the activation parameter γ, the stress-stretch relationship is in good agreement
with the experimental data of Fig. 3.1 for γ ∼ 0.5.

The model however has some limitations: the passive curve overestimate the
stress for λ ' 1.2. Moreover, the compressive branch of the passive curve can
not be compared with measures. In the experimental literature, some works re-
port that the passive stress generated performing a uniaxial compression along
the direction of the fibers is lower than the one occurring in extension [210].
However, other works report a behaviour in compression with the stress of the
same order of magnitude of the stress obtained in extension, in one case even
higher [217, 36, 35] (see [210] for a comparison between the data). Our model
predicts a behaviour which is similar to the second case. In order to obtain a
softer behaviour in compression, it would be necessary to exploit a more in-
volved expression of the strain energy densities ψiso and ψani (e.g. considering
an anisotropic energy also for the passive constituent of the muscle).

Summarizing, we have shown that by using an active strain approach on
the anisotropic part of the strain energy density only, one can quantitatively
reproduce the behaviour of the skeletal muscle in extension. The mixed active
strain approach allows to overcome two limitations of the “pure” active strain.
First, increasing the activation parameter, the strain stiffening appears always
at λ = 1.3. Second, we observe a change of concavity in the stress-strain curve
in the tetanized case (γ = 0.5) at λ ' 1.1 (Fig. 3.3). Mathematical issues raised
by the mixture active strain are the subject of the next Section.

3.1.3.1 Material symmetry group and muscle activation

Even if the mixture active strain approach better fits the experimental data
with respect to the active strain, it remains an open question whether such
approach preserves or not some mathematical properties. For the “global” ac-
tive strain approach (3.3), rank-one convexity is preserved [9]; in the mixture
approach, if the strain energy functional is rank-one convex globally in the pas-
sive case, we cannot state rank-one convexity without further assumptions on
ψiso and ψani. If both ψiso and ψani are rank-one convex, then

δF :
∂2ψ(F)

∂F∂F
: δF = δF :

∂2ψiso(F)

∂F∂F
: δF + δFF−1

a :
∂2ψani(F)

∂F∂F
: δFF−1

a > 0

for all δF which are rank-one since also δFF−1
a is a rank-one tensor [9]. If the

material is incompressible, δF must also belong to the tangent space to the
manifold det F = 1, namely F−T : δF = 0.

The same happens for polyconvexity: if both the ψiso and ψani are polyconvex
in the passive case, then the polyconvexity is preserved in the active case. This
is a direct consequence of Lemma 6.5 in [150].
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The active strain preserves the material properties during muscle contraction.
Indeed, the multiplicative decomposition of the deformation gradient is equiv-
alent to a remodelling, leading to a change of the relaxed state of the body
[77, 78]. Other methods, such as the active stress or the mixture active strain,
do not correspond to a remodelling and a modification the material properties,
such as the shear modulus or the material symmetries, can take place as a con-
sequence of material activation. If we use the language introduced by Epstein
[78], there is change of the archetype of the body.

It is expected that the symmetry group of the material is preserved, during
muscle activation, since the contraction of sarcomeres does not generate any
new structural anisotropy. Let

Giso =
{

Q ∈ U+(R3) | ψiso(FQ) = ψiso(F) ∀F ∈ U+(R3)
}

,

Gani =
{

Q ∈ U+(R3) | ψani(FQ) = ψani(F) ∀F ∈ U+(R3)
}

.

The material symmetry group of the passive muscle is given by G = Giso ∩ Gani.
If the muscle is activated, the material symmetry group of the anisotropic part
of the energy becomes [78]

Ĝani = F−1
a GFa,

and so the material symmetry group of the whole energy reads Ĝ = Giso ∩ Ĝani.
It is easy to verify that if ψiso is isotropic and ψani is transversely isotropic

with direction of symmetry M, if we apply an activation of the form (3.4), then
the symmetry group of the material is not modified by the mixture active strain,
i.e. G = Ĝ.

Summarizing, the active strain approach corresponds to a remodelling [78,
175]: there is only a morphological change in the relaxed configuration and
the properties of the material are conserved. In the previous sections, we have
proved that the active strain cannot fit the experimental data of the uniaxial
extension of a skeletal muscle. During muscle contraction, the mutual posi-
tions of the actin and myosin filaments change, leading to a modification of
the microstructure: the increased number of cross bridges should result into a
different stiffness of the tissue. The active strain approach allows to describe
the modification of shape induced by muscle contraction but it does not take
into account the evolution of the material properties induced by the formation
of cross bridges (i.e. the shear modulus of the material does not change).

Conversely, the mixture active strain approach correctly reproduces the ex-
perimental data for the uniaxial traction of the muscle, without changing the
symmetry group of the material.

3.1.4 Discussion and concluding remarks

We have analyzed some aspects related to the modelization of muscle acti-
vation. First, in Section 3.1.1 we have provided a review of the active strain
approach for modeling the activation of an elastic medium. In Section 3.1.2
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we have compared theoretical predictions vs. experimental data provided by
Hawkins and Bey [104]. We have showed that, independently from the chosen
passive model, the active strain approach cannot reproduce the stress-stretch
curve of the tetanized tibialis anterior muscle.

According to the classification made by Epstein [78], the active strain ap-
proach corresponds to a remodelling of a material, namely a change of shape
that does not affect the material properties and the microstructure. The inade-
quacy discussed above shows that the contraction of the muscle is not a simple
remodelling and the microstructure of the tissue and the material properties
change.

Since it is not possible to model the skeletal muscle contraction as a pure
remodelling, in Section 3.1.3 we have proposed a model of the muscle alterna-
tive to the active strain obtained by a mixture approach, applying the Kröner–
Lee decomposition of the deformation gradient only on one component (the
anisotropic part) of the strain energy density. To make quantitative compar-
isons, we have used a Gent strain energy density for the isotropic part and the
strain energy (3.11) for the anisotropic one. Such a simple approach, called
mixture active strain, provides results which are in good agreement with the
experimental ones.

Convexity properties are preserved if both the isotropic and the anisotropic
part of the strain energy are polyconvex or rank-one convex. Also the material
symmetry group is preserved if ψani is transversely isotropic along the direction
M and Fa has the form (3.4).

It is to be remarked that while a correct representation of the stretch-stress
curve for uniaxial homogeneous deformation is a mandatory requirement, it is
not sufficient to obtain a reliable model for a generic deformation, in particular
in shear [93]; a deeper understanding of the possible change in the microstruc-
ture and in the material properties due to the process of muscle activation is
required.

The results of this work may support the development of models of the mus-
cle tissue activity: a reliable mathematical description of the skeletal muscles
or of the whole heart are active and open research topics in biomechanics and
in the field of biomedical engineering.

3.2 solid tumours are poroelastic solids with a
chemo–mechanical feedback on growth

Solid tumours can be regarded as active materials, since malignant cells du-
plicate in presence of nutrient. After Folkman & Hochberg [86], the multicellar
spheroid is a standard in vitro system used to evaluate the uncontrolled dupli-
cation rate of a tumour cell aggregate. A tumour spheroid is a cluster of cells
floating in a culture medium, it is an ensemble of cells freely proliferating in
an environment with large availability of nutrient. The malignant cells have
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lost the ability to self–regulate their own number through a normal apoptosis
mechanism, regulated by the homeostasis with the environment; they duplicate
in an uncontrolled manner, isotropically, producing a nearly spherical shape.
In the standard free–growth case, a plot of the diameter of the tumour vs. time
typically exhibits an early stage of exponential growth, followed by a linear one.
The transition from one regime to the other is mainly regulated by the availabil-
ity of nutrient, that is driven by diffusion through the intercellular space. In
fact, when the size of the tumour Ro(t) is smaller than the typical diffusion
length, the nutrient is everywhere available in the spheroid and the growth is
volumetric [8]:

dR3
o

dt
' Ro

3,

so that Ro ' et. Conversely, when the diameter of the spheroid is much larger
than the penetration length of the nutrient, one obtains surface growth, that is

dR3
o

dt
' Ro

2,

and Ro ' t. In a realistic intermediate regime, the concentration of nutrients
decays exponentially with the radius [100], favouring the external proliferation
vs the internal one. The mechanism underlying cell duplication and, in par-
ticular, the influence of the mechanical stress on growth is still not completely
understood.

The work of Chapter 3.2 is motivated by a number of recent experiments
that demonstrate the dependence of the growth rate of a tumour spheroid on
the mechanical load at the boundary. Some papers report a reduced apoptosis,
with no significant changes in proliferation [106]. According to others, the cell
division, rather than the cell death rate, is affected by stress [143]. To disentan-
gle the puzzle of the biological feedback of stress on growth, in Chapter 3.2 we
discuss the rheology of the cellular aggregate as a living material, to point out
its constitutive properties. We illustrate a number of arguments that support
the hypothesis that a solid tumour is a poroelastic material, where the cells and
the extra-cellular matrix represent the solid elastic component. A mathematical
model based on such an assumption is able to predict inhomogeneities that can
not be justified by fluid-like assumptions.

3.2.1 Background: elementary rheology and growth theory

The simplest distinction among fluid and solid materials can be based on an
elementary ideal experiment: under a pure shear load fluids flow, while solids
do not, at the time scale of interest. This draconian categorization encompasses
also viscoelastic materials, as they typically exhibit fluid-like or solid-like prop-
erties depending on the relaxation time scales. As an example, a "Maxwell
fluid" behaves as a solid if observed at a time scale much smaller than its relax-
ation time. Analogously, a "Kelvin solid" flows like a fluid when observed on
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short enough time scales. Things become a little bit more complex when flow
is prompted only above a yield stress, but the distinction persists when loads
are neatly below or beyond the threshold.
Many biological materials are composed by a mixture of several components:
interstitial fluid, different species of cells, collagen fibres, and so on. For
these microscopically heterogeneous materials the overall mechanical behavior
is represented, at the macroscale, by the superposition of single phase contribu-
tions, proportionally to the volume fraction occupied by each component. The
archetypical example of a mixture is a porous elastic material permeated by a
fluid: the stress in a poroelastic medium is the sum of the interstitial pressure
of the fluid plus the solid stress, which is proportional to the solid volume frac-
tion.
Fluids and solids behave in a very different manner when internal stresses arise
not because of external loads, but as due to the inner material reorganization
(growth and remodelling). The simplest example are thermal stresses in inho-
mogeneously heated materials with temperature-dependent density: residual
stresses relax in fluids, not in solids. The persistence of residual stress is there-
fore the signature of solid-like behavior which has to be properly addressed in
a modelling framework. In case of small strains, linearized elasticity applies
and stress (and strains) can be superimposed. In case of large strains, as it is
often the case with soft matter, a multiplicative decomposition of the tensor
gradient of deformation has to be introduced.
For our purposes, we represent the motion of every material point of a con-
tinuous body as a smooth invertible map ϕ(X) with Jacobian F = ∂ϕ

∂X . For a
nonlinear elastic material the strain energy is ψ(F); when the body grows and
residual stress is present, the strain energy rewrites

ψ(FG−1) (3.13)

where G is usually called “growth tensor”.

3.2.2 Are solid tumours fluids?

While the availability of nutrients is the major factor affecting tumour growth,
other external agents can play a role. The mechanical influence of external load-
ing on tumour growth has been first demonstrated by Helmlinger et al. [106].
They designed an experimental setup in order to control the load applied at
the boundary of tumour cell spheroids in vitro in agarose gels, and checked the
influence of such a stressed state on the growth rate of the multicell spheroid.
They compared the free growth of a floating multicell spheroid with the size
of cell aggregates placed into the agarose gel. The gel is produced at a given
(known) stiffness by suitably tuning the concentration of the solid phase. As
the spheroid grows, it displaces the surrounding gel, which then exerts a com-
pressive force at the surface of the tumour spheroid. An a priori mechanical
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characterization of the gel allows to calculate the pressure exerted by the gel on
the spheroid, depending on its radius.

The main result of the experiments carried out by the group of Rakesh Jain
[106] is that the stress field reduces the final size of the spheroids, with a de-
creased apoptosis and non significant changes in proliferation. It is therefore
clear that a precise determination of the constitutive laws that characterize the
mechanical behavior of a tumour spheroid is a pre-requisite in order to assess
a reliable stress–growth relationship.

Early attempts in this respect assumed that a cell conglomerate behaves like a
viscoelastic fluid, able to bear a static load because of its surface tension [87]. At
equilibrium, measurements of the curvature radius of a loaded sample provide
the surface tension of the “fluid".
According to the Laplace formula, the pressure jump across a curved interface
between two fluids is inversely proportional to the radius of the curvature.
If the spheroid is loaded with the force F acting on a contact surface A, by
continuity of the stress, the inner pressure is F/A and therefore

F
A

= σ

(
1

R1
+

1
R2

)
(3.14)

where σ is the surface tension and R1, R2 are the curvature radii of the free
surface. According to the experiments, the surface tension of a cell aggregate
ranges in 1− 22 · 10−3 Newton/meter (as a reference value, the surface tension
of the water is about 72 · 10−3 Newton/meter). Relaxation times range between
1 and 50 seconds [87].

The opposite approach is to describe a solid tumour as a viscoelastic solid.
In this case, at equilibrium the external load should be balanced by the stress
in the body, depending on the strain of its material points. Assuming an ho-
mogeneous deformation and using the same data provided by the experiments
above, one can estimate the Young modulus E according to the following rule:

F
A

= E
h− h0

h0
(3.15)

where h, h0 are the height of the loaded and unloaded sample, respectively. In
this case one finds E ' 4 kPa, a typical soft–range value for living cells [127].

A second argument supporting the assumption of solid–like constitutive
equations is based on the spatial correlation between stress and apoptosis–
mitosis in loaded ellipsoidal spheroids [51]. The non–homogeneous prolifera-
tion pattern can be produced only by a solid-like material: a hydrostatic gener-
ates a pressure independent on the position in any symmetric geometry, while
in a solid material, high stress concentrates around the tips.

Furthermore, the work by Netti et al. [151] support the view that tumours
behave as solid-like materials. In their study, stress-relaxation experiments of
various tumour types in confined compression were performed and at the end
of the experiment all tumours equilibrated in a constant, non-zero stress, typical
of viscoelastic solids.
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Finally, evidence of residual stress in murine and human tumours is reported
by Stylianopoulos et al [198]. They cut the tumour azimuthally and observed
an opening angle, which is the signature of a solid like behavior. Residual
stress is likely produced by an inhomogeneous duplication rate of the cells as
well as by mechanical interactions between the cells and extracellular matrix
components, particularly collagen and hyaluronic acid, that strain the tumour
microenvironment. Only solids can contain residual stress, due to the evolution
of their relaxed configuration produced by incompatible growth [7]: energy
can be elastically stored in the unloaded body only if it is a solid. In particu-
lar, Stylianopoulos et al. observed a compressive residual stress (i.e. negative
opening angle) in the kernel and a tensile residual stress (positive opening an-
gle) in the outer shell of the tumour. This behaviour is paradoxical in terms of
availability of nutrients: their concentration is larger near the boundary, thus
favoring proliferation and eventually producing compressive stress. In a solid
tumour in vivo, this intuitive explanation does not work and we address such a
puzzle in the next sections.

3.2.3 Growth and stress

An evocative definition of a tumour is “a living system that has lost its self–
regulating ability towards homeostasis”. In other words, tumour cells do not
correctly detect or elaborate the external signals that should regulate its prolif-
eration and apoptosis, and duplicate without control. When the stress state of
the system is not in homeostatic mechanical equilibrium, it remodels (growing
or resorbing matter) until the target tensional state is recovered. In this respect,
all the genetic information that detail the shape and function of organs are en-
coded in the target stress. A suggestive mechanical interpretation of a tumour
therefore naturally arises: a tumour is an open system (in terms of mass and
energy) with a damaged inner mechano-biological control inducing a disregu-
lation of tensional homeostatis, i.e. the feedback that normally self–regulates
growth in terms of stress–modulated control does not properly work. In other
words, tumour cells regulate production and consumption not according to a
benefit of the whole organism but only in view of maximum invasion of ma-
lignant cells: the control on growth does indeed exist, also as a function of
available nutrients, but the corresponding duplication/apoptosis strategy has
a different aim.

The experiments illustrated in the section above do not only demonstrate the
existence of residual stress in tumours, but they also show that the inhomoge-
neous proliferation and apoptosis, triggered by the differential availability of
nutrients, is enhanced in a mechanically loaded spheroid. Their main result is
that mechanical stress affects proliferation and apoptosis inside the spheroid in
a non–homogeneous way, a correlation existing between strong apoptosis and
high stress.
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In another series of experiments, the compression of the spheroid is con-
trolled by the concentration of a large molecule (Dextran) soluted in the bath
[142, 143]. As Dextran molecules cannot enter neither the cell membrane nor
the interstitial (intracellular) space, an imbalance of osmotic pressure at the
boundary loads the cellular aggregate. It is reported that for larger concen-
trations of Dextran the diameter of the spheroid grows slower and reaches a
plateau at smaller radius, in agreement with the results of Helmlinger et al [106].
While a single cell is almost incompressible with respect to the pressure due to
the concentration of Dextran, the volume of the cell aggregate strongly depends
on the osmotic pressure [141]. The reduction in volume in the cellular aggre-
gate therefore mainly occurs because of reduction of the intercellular space, in
the inner region of the spheroid.

The large number of available data suggests that a cell aggregate behaves
as a poroelastic material. The mathematical modelling of solid tumours as
porous deformable media has been addressed in a number of papers [43, 11,
183]; it a suitable mechanical framework to account for the coupled dynamics
of cells and extracellular matrix (the solid matrix) and interstitial fluid. The
interstitial flow is typically represented by a Darcy-type equation, while the
mass exchange among phases which allows a prediction of the growth of the
mass.

In the experimental setup by Montel et al. [142, 143] the porous media theory
offers a transparent explanation for interplay between the pressure of the fluid,
the chemical potential of the Dextran and the stress in the solid matrix. The
external load at the boundary is the sum of two terms: the pressure of the
fluid plus the chemical potential of the Dextran. Observing that the diameter
of the macromolecules is typically larger than the size of the intracellular pores,
we split the fluid load into two contributions: one that balances the interstitial
pressure, the other one loading the solid (cellular) component. Formally, we
assume that the global balance at the boundary

(−p− pD)out n = (T− pI)in n, (3.16)

splits into

−pout = −pin,

−pDn = Tn,

(3.17)

(3.18)

where p is the pressure of the interstitial fluid, pD is the osmotic pressure contri-
bution due to the concentration of Dextran, T is the Cauchy stress tensor in the
cellular aggregate, I is the identity tensor and n is the outgoing normal (radially
directed) vector. This assumption is in agreement with the observation that the
solid stress is not affected by the interstitial fluid pressure [198].
On the basis of this hypothesis, the stress state in the loaded spheroid can be de-
termined solving the force balance equations for the solid component only. As-
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suming spherical symmetry, the tensor gradient of deformation and the growth
tensor read

F = diag
(

r′,
r
R

,
r
R

)
, G = g(r) I, (3.19)

where r(R, t) is the radial coordinate of the material point that was in R at time
t = 0, I is the identity tensor and the prime ′ denotes derivation in R. The solid
component of the poroelastic spheroid must satisfy the force balance equation

d
dr

Trr +
2
r
(Trr − Tθθ) = 0, (3.20)

with boundary conditions

r(0, t) = 0, Trr(ro) = −pD. (3.21)

where ro = r(Ro, t). A simple representation of an hyperelastic compressible
material is provided by the strain energy

ψ̂(F) =
µ

2
(F · F− 2 log(det F)− 3) . (3.22)

If the material grows, the strain energy depends on the growth tensor too,
through a classical multiplicative decomposition

ψ(FG−1) =
µ

2

(
FG−1 · FG−1 − 2 log(det(FG−1))− 3

)
. (3.23)

where µ is the shear elastic modulus. First variation and pull back to the refer-
ence configuration yields the first Piola-Kirchhoff stress

P = µ det(G)
(

G−1G−TFT − F−1
)

. (3.24)

where, explicitly,

PRR = µg3
(

r′

g2 −
1
r′

)
, PΘΘ = µg3

(
r

Rg2 −
R
r

)
. (3.25)

The force balance equation (3.20) in material coordinates reads

d
dR

PRR +
2
R
(PRR − PΘΘ) = 0, (3.26)

or, explicitly,

d
dR

(
r′g− g3

r′

)
= 2

(
g

r
R2 −

g3

r
− g

r′

R
+

g3

r′R

)
(3.27)

to be supplemented by boundary conditions (3.21) rewritten in material coordi-
nates

PRR(Ro) = (det F) Trr F−1
rr |R0 = −(det F) pD F−1

rr |R0 (3.28)
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or, explicitly

µg3
(

r′

g2 −
1
r′

)
|R0 = −pD

r2

R2 |R0 . (3.29)

For constant g the force balance equation (3.27) with boundary conditions (3.29)
has solution

r(R; g) = γgR (3.30)

where γ is the positive root of the third order polynomial

f (γ) = pDγ3 + µγ2 − µ = 0. (3.31)

One may notice that f (0) = −µ < 0 while f ′ is always positive, therefore the
root is unique. Moreover f (1) = pD > 0, so that it must be 0 < γ < 1.

Remark 3.2.1. One could observe that poroelasticity has been advocated for the model
above, but its use is apparently very limited: there is no interstitial fluid flow, and
the porosity, the volume fraction of solid vs. liquid component, is not even mentioned.
There is a rationale behind such a minimal choice. Fluid flow is so slow that it carries
no contribution in the stress balance equation; of course, mass exchange among species
is the true physical mechanism for the growth of the tumour mass, however here it
is directly incorporated in the growth tensor G. Secondly, the porosity of the matrix
should contribute to the stress tensor T with a multiplicative factor depending on the
determinant of the gradient of deformation; as a matter of fact, we incorporate such a
contribution in the compressibility of the strain energy function (3.22). The numerical
results to be illustrated in the next sections will confirm that good predictions can be
obtained even with such a simple constitutive law, thus confirming that the theory
weakly depends on the specific constitutive equation for the strain energy density of the
solid matrix. The crucial ingredient of the model is the multiphase split of the load at
the boundary into a fluid and a solid component (3.19).

3.2.4 Mechanobiological feedback and equilibrium

In the general case, a growth law for G is to be supplemented to close the dif-
ferential equation (3.27-3.29). We consider first the case of growth controlled by
a mechanical feedback only. If nutrients are largely available everywhere, the
growth in time is expected to depend on the stress only. In finite elasticity, the
growth must depend on an invariant measure of the stress. A thermodynami-
cally consistent choice is to adopt the dependence on the Eshelby stress [6]. To
minimize the calculations, while preserving the essential biophysical features,
we chose here to measure the stress in terms of the second Piola-Kirchhoff ten-
sor S, which reads

S = PF−T. (3.32)
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The mitotic rate of single tumour cells is known to be inhibited by compression
[106], and promoted by tension [50], and a very simple growth law that can
account for such a behavior is

ġ =
g
τ

(
1 +

tr S

3κµ
− g

α

)
(3.33)

where 1/τ is the mitotic rate in absence of external stimuli, κµ is a threshold
stress and the last term in brackets accounts for apoptosis, the natural cellular
death rate. We highlight that the assumption of an isotropic growth tensor al-
lows to set a functional dependence on the trace of S. For a general anisotropic
growth a more complex dependence on the principal stresses would be needed,
guided by thermo-mechanical requirements.
Consider the unloaded case first: −pD = 0 and at time t = 0 the solid com-
ponent has g = 1. As S = 0, the evolution in time of G is autonomous and
independent of the radial position, so that g(t) is constant in space and its evo-
lution in time initially follows the well known exponential growth in size of the
cell aggregate up to a saturation dictated by the value of α. The solid compo-
nent of the poroelastic spheroid is therefore relaxed, exactly as a sponge in the
deep ocean, where the interstitial pressure balances the head of the water.
If Dextran is present, the extra pressure compresses the cellular phase and trig-
gers the mechanobiological feedback via equations (3.33). The growth g(t) is
given by the solution of the first order ordinary differential equation

ġ =
g
τ

(
1− g

(
γpD

κµ
+

1
α

))
. (3.34)

Equation (3.34) has two equilibrium points: g = 0, always unstable, and

ge =
ακµ

αγpD + κµ
(3.35)

which is always stable (for the fixed r(R; t) of (3.30)). The mathematical model
therefore predicts the following scenario, corresponding to the observed dy-
namics. For null osmotic pressure, the system grows exponentially, then it
tends to saturation. For sufficiently large osmotic pressure the stable equilib-
rium depends on the applied pressure pD. After derivation of equations (3.31)
and (3.35) we get

dge

dpD
= − α2κµ

(αγpD + κµ)2
γ (2γpD + 2µ)

3γpD + 2µ
< 0. (3.36)

The solution of equation (3.34) explains the plateau in growth vs time reported
for loaded spheroids at different Dextran concentrations, but it does not ac-
count for the radial density inhomogeneities observed in excised aggregates.
Remaining in a purely mechanical setting, an explanation for such a discrep-
ancy between theory and experiments could be provided by the possible onset
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of an instability for the equilibrium solution (3.34) of the coupled problem. This
question is addressed in the appendix, where we study the stability of the so-
lution of the nonlinear system (3.27) and (3.33) with boundary conditions (3.29)
in order to explain the emergence of inhomogeneity. The result of the analy-
sis is that the small perturbations are always damped in time, so that a purely
mechanical framework cannot account for the observed dependency of growth
on the radial coordinate. The biophysics of the system needs therefore to be
enriched: in the next section we show that the kinetics of nutrients can trigger
dependence of the asymptotic state on the radial coordinate.

3.2.5 Dynamics of the nutrient and inhomogeneity of growth

In an avascular tumour, nutrients are provided to malignant cells by diffusion
through the boundary of the spheroid. The balance between diffusion and
uptake is fast with respect to the growth times (one hour vs. days) and obeys a
linear reaction–diffusion equation:

− 1
r2

d
dr

(
r2 dc

dr

)
= − c

λ2 . (3.37)

with boundary conditions

dc
dr
|r=0 = 0, c(r0) = c0, (3.38)

where the decay length λ is on the order of 100-200 micrometers and c0 is the ex-
ternal (constant) concentration. We remind that the boundary value problems
refers to the avascular phase of tumour growth. At later stages, neovascular-
ization can be triggered after the diffusion-limited radius is reached. In such a
case, a distributed nutrient supply from the tumour vascular network should
also be taken into consideration.
During the avascular growth phase, the concentration profile can be calculated
by direct integration of the equation in spatial coordinates [100], yielding an
exponential decay of the concentration of nutrient going from the boundary to
the center of the spheroid:

c(r) = c0
r0

sinh(r0/λ)

sinh(r/λ)

r
. (3.39)

To account for the combined action of stress and nutrient pattern, we propose
to rephrase equation (3.34) to the following growth law

ġ =
g
τ

c
(

1 + c
(

tr S
3κµ
− g

α

))
. (3.40)

According to equation (3.40), the proliferation of the malignant cells is en-
hanced by the availability of nutrient, as it is usually assumed in mathemat-
ical models that do not specifically account for mechanics. In the same way as
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in equation (3.33), it is expected that the system reaches an equilibrium when
the term in brackets vanishes: a plateau in size is observed for large enough
times. The novelty of this growth law is that the equilibrium does not cor-
respond to an homogeneous growth tensor gI, but it depends on the radial
position through the concentration of nutrient, thus originating an inhomoge-
neous residual stress. Using numerical simulations, in the next sections we are
able to show that the predicted residual stress is in agreement with the reported
opening angles from cutting experiments.

3.2.6 Numerical simulations

Numerical integration of equations (3.27) and (3.40) with boundary condi-
tions (3.29) and initial conditions

r(R, t = 0) = R, g(R, t = 0) = 1 (3.41)

is performed using a finite difference scheme with centered discretization in
space and a fourth order Runge-Kutta scheme in time. The parameters used in
the numerical simulations are τ = 2.5 days, κ = 2.9 kPa, α = 3.7, λ = 250 µm
and µ = 10 kPa. The initial radius is 100 µm, the final simulation time is t f = 25
days and the boundary condition of (3.37) is c0 = 1.
The volume of the spheroid initially grows very rapidly for all values of pD. At
large times, for null or small values of osmotic pressure the slope of the curve
becomes very small, and it becomes horizontal for large pD (Figure 3.4).

As expected, the non-uniform pattern of nutrients triggers a weak inhomo-
geneity in growth. While the predicted growth pattern cannot be directly com-
pared with data, it is indirectly supported by the residual stress that it produces
by the relation (3.13). The radial and hoop component of the residual stress are
plotted in Figures 3.5 and 3.6 versus the radial coordinate at equilibrium.

As expected, the radial stress vanishes on the boundary of the spheroid,
while it is internally compressive. Conversely, the hoop stress changes sign,
being compressive in the core and tensional in the outer layer. Such a residual
stress distribution is stable against both circumferential and azimuthal pertur-
bations of the tumour boundary, as investigated in [55].

Data on residual stress of in vitro tumour spheroids are not available, proba-
bly because they are too soft and do not reach a size such that a mechanical ma-
nipulation and a precise cut can be operated. However the pattern reported in
Figure 3.5 and Figure 3.6 is in qualitative agreement with experiments on (much
bigger) human tumours implanted in mice [198]. Stylianopoulos et al. observe
that cells at the periphery of the spheroid are restricted by the surrounding
tissue and thus, during radial tumour growth they develop tensile circumferen-
tial forces. Surrounding tissues in vivo would then produce on the tumour a
compressive hydrostatic pressure increasing with the tumour growth. Further-
more, Figures 3 and 4 depict that the magnitude of stress - either compressive
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Figure 3.4: Volume of a spheroid vs. time for different values of the osmotic pressure.

or tensile - increases as the osmotic pressure exerted on the cells, pD, decreases.
This is explained by the fact that for low osmotic pressures the tumour becomes
larger in size and the stresses increase.

If the external pressure is removed, the radius quickly grows and reaches the
same value of the free-growth case (Figure 3.7), in agreement with the experi-
mental results [142].

3.2.6.1 Stress release in a cut spheroid

A quantitative comparison among observed and predicted residual stress can
be obtained on the basis of the opening angle of cut specimens. To this aim,
tumour spheroids have been grown in mice and then they have been cut along
their azimuthal plane for about 80% of their diameter. The spheroids then
partially relax their residual stress: the cut surface opens up at the periphery
while the inner region swells (see figure 3.8). Figure 3.9 depicts the cutting
experiments for breast and pancreatic tumours implanted in nude mice, also
reporting the tumour opening length and the maximum residual stresses within
the tumour specimens.

The observed behavior, which is in qualitative agreement with our predic-
tions in the stress pattern in small, in vitro, spheroids, can be quantitatively
compared with opening angles data on the basis of a three dimensional numer-
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Figure 3.5: Radial residual stress versus the radial position at final time for different
values of the osmotic pressure.

ical simulation only. As a matter of fact, an axial cut of a ring preserves the
cylindrical symmetry of the problem [68], while an azimuthal cut of a sphere
breaks it.

Numerical simulations are obtained using a finite element code that solves
the equation of finite elasticity on a spherical wedge. The computation repro-
duces the physical observations: the spheroid grows under spherical symmetry
which is eventually broken by the cut. We therefore use the growth tensor com-
puted under radial symmetry assumption and we evaluate the opening angle
that it produces.

The 3D numerical problem is based on FEniCS [4]. The computational do-
main is discretized with quadratic tetrahedral elements, with an average di-
ameter of 10 µm. Since we expect near to singular stresses around the edge
of the cut, the mesh is gradually refined nearby this edge to one twentieth of
the original size. The mesh contains roughly 28 143 elements and it has been
produced by Gmsh [91]. The non-linear variational problem is discretized with
quadratic isoparametric finite elements, and the final problem has 137 949 de-
grees of freedom. The solver for non-linear problem is based on a modified
Newton’s method specifically designed for variational inequalities, and imple-
mented in the PETSc framework [21]. The solver can deal with inequality con-
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Figure 3.6: Hoop residual stress versus the radial coordinate at final time for different
values of the osmotic pressure.

straints, as we have on the cut boundary surface to avoid self-contact during
the swelling. The solver for the linear system is MUMPS [14].

The simulation is performed in two steps: first, we apply a homogeneous
growth tensor obtained by averaging the target one, while keeping the cut
sealed; then, we release the cut and we enforce the final growth tensor. This
strategy facilitates the convergence of the non-linear solver, which performs 40

iterations at most. A relative error below 1% on the opening angle is observed
when the mesh is uniformly refined, certificating the numerical convergence.

Boundary conditions, reported in Figure 3.10, apply as follows: the outer
boundary is stress-free, the cut surface is enforced to have non-negative dis-
placement in the normal direction to avoid self-contact, and on the internal,
intact, portion of the boundary symmetry arguments yield null normal dis-
placement and while the other components of the displacement must have null
derivative with respect to the normal direction. In Figure 3.11 the deformed
configuration obtained after a vertical cut of 80% of the diameter is shown.

The parameters used in the numerical simulations are τ = 2.5 days, κ = 33.35,
α = 37, λ = 2.5 mm, µ = 27.0 kPa and pD = 5.0 kPa. The initial radius is 100 µm,
the simulation ends at t = 50 days and the boundary condition of (3.37) is
c0 = 1. In the numerical experiment the tumour opens with an angle of 11.70

◦,
corresponding to 1.41 mm of opening length. The final volume is 169.84 mm3.
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Figure 3.7: Radius of the spheroid vs. time for pD = 0 (blue line) and pD = 2000 Pa
(green line). After 12 days the external pressure is removed and the system
returns the curve corresponding to the unloaded state.

The inner-most part of the cut, for about 20% of the diameter, is in self-contact,
certificating that this portion of the tumour tends to swell outward after the cut.
It is to be remarked that the diffusion length assumed here is larger than the
one used for small in vitro spheroids.

These results are in agreement with the ex-vivo experiments: the opening
length, the final volume and the hoop stress are very close to the reported ones
for the MiaPaCa2 tumour number 4 (see Figure 3.9) [198].

In order to investigate the relationship between the heterogeneity in the
growth tensor and the opening angle, we have performed a numerical exper-
iment where the difference between the growth at the center and the bound-
ary of the tumour is stepwise increased from zero to a value of 20. Table 3.1
summarizes the result of the simulation. As expected from the theory, a uni-
form growth yields no residual stress and the tumour does not open after the
cut (first column of the table). On the other hand, the greater the difference
in growth between the center and the boundary, the larger the opening length
and consequently the opening angle (from the second column of the table). The
volume is mostly affected by the average value of the growth over the entire do-
main, and not by the heterogeneity. The numerical experiment also shows that
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Figure 3.8: An intact, residually stressed spheroid (left) is cut along an azimuthal plane
for 80 % of its diameter. The outer region opens up while the inner one
swells(right), thus distribution of residual stress that goes from compres-
sive to tensile along the radial coordinate.

Figure 3.9: Tables with experimental measures (top) of cutting experiments (bottom)
for MCF10CA1a breast tumour cells (left) and for MiaPaCa2 pancreatic
tumour cells (right) implanted orthotopically in the mammary fat pad of
nude mice.
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the angle linearly increases with the difference in growth of about 8
◦ every 10

units per mm of growth.

Symmetry

Cut

Symmetry

Stress-free

Figure 3.10: Computational domain and boundary conditions for the 3d numerical
experiment of the opening angle. The “symmetry” label indicates that
the surface is fixed in the normal direction. The vertical cut is 80% of the
diameter deep.

g(R = 0) 45.0 44.0 43.0 42.0 41.0 40.0
g(R = R0) 45.0 48.0 51.0 54.0 57.0 60.0
opening length [mm] 0.0 0.540 1.12 1.70 2.30 2.92

opening angle [deg] 0.0 3.43 6.94 10.5 14.2 18.0
volume [mm3] 94.7 94.8 95.0 95.4 95.9 96.6

Table 3.1: Numerical result of a stepwise increase of the difference in growth between
the center and the boundary of the tumour. The growth function g(R) is
linear in the radial component.

3.2.7 Discussion and concluding remarks

The growth of a tumour spheroid can be controlled using mechanical stress:
when an osmotic pressure is applied at the boundary, the radius of the ag-
gregate grows in time until it reaches an equilibrium volume which inversely
depends on the load. The size control is fully reversible: when traction is re-
leased, the cellular matrix relaxes and returns the original growth curve. The
observation that the intercellular space forms a pore-like structure, that macro-
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Figure 3.11: Current configuration of an unloaded grown sphere with initial radius
of 100 µm. The sphere is azimuthally cut at the final time. The parameters
in the simulation are: τ = 2.5 days, κ = 33.35, α = 37, λ = 2.5 mm,
µ = 27.0 kPa and pD = 5.0 kPa. The domain of the numerical simulation
is a quarter of a sphere. For the sake of graphical clarity of the opening
angle, the spherical wedge is combined with its symmetric counterpart.
The body is unloaded but not stress free: the color map represents the
trace of the Cauchy stress tensor. The lowest part of the cut is partially
resew by the swelling.

molecules cannot enter, suggests to represent mechanically the cellular aggre-
gate as a poroelastic material [138]. The evidence of a residual stress leads
to the assumption that the solid phase is hyperelastic: the large compliance
of the cell aggregate is due to the squeezing of the intracellular fluid and the
corresponding reduction of the intracellular space, while the single cells are
much stiffer [141]. Boundary conditions are split accordingly: the osmotic pres-
sure generated by the Dextran solution of the surrounding fluid loads the solid
phase only.

The exponential decay in the pattern of nutrients makes the proliferation pro-
cess of a sufficiently large loaded spheroid inhomogeneous and the generated
residual stress depends on the radial position: it is compressive near the center
and tensional at the periphery [198]. This feature is paradoxical when com-
pared with the usual scenario: large availability of nutrients at the periphery of
the spheroid is expected to favour the proliferation and, therefore, emergence
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of compressive residual stress. The dynamics of tumour growth is apparently
different: tumour cells duplicate (or control their apoptosis) on the basis of
the available nutrients, but their target stress modulates so as to produce com-
pression in regions with small concentration of nutrients. In other words, the
reported radial distribution of residual stress can be explained only admitting
that in the inner regions, where the concentration of nutrients is very small, ma-
lignant cells slow down their apoptotic rate, in agreement with the observations
of Helmlinger et al [106].

After a standard multiplicative decomposition of the tensor gradient of de-
formation to account for growth, we introduce a simple law of biomechanical
feedback, and we are eventually able to explain the observed dynamics. On the
basis of such a conjecture, we were able to reproduce growth profiles of tumour
spheroids for different values of the applied load and the open angles of mice
bearing breast tumours. Particularly for the second result, the solid phase of
mice bearing tumours apart from cells consists also of the extra-cellular matrix,
which can contribute to the development of residual stress. Here the mechani-
cal contribution of all components of the tumour are resumed in the solid phase,
and the growth tensor G accounts also for the possible tensional contribution
due to the elongation of the collagen fibres.

Our mechanobiological model explains the observed smaller asymptotic vol-
ume as a function of increasing osmotic load on the basis of a stress-growth
coupling. At later stages, not covered by the present model, when the radial in-
homogeneity is fully developed, the solid (cellular) component of the spheroid
undergoes a stress per volume fraction larger than a threshold that takes it into
the plastic regime [12]; then cells start flowing centripetally, producing an inter-
nalization of the cells from the periphery to the center of the tumour [73, 65].

3.2.8 Appendix – Stability of the homogeneous solution

The integration of the “stress-modulated growth” illustrated in the previous
section predicts a spatially homogeneous solution, parametrically depending
on the time-dependent growth rate. The growth g(R; t) is independent of the
radial position because the stress is the same everywhere. In such a purely me-
chanical setting we now study the stability of the homogeneous solution (3.30)
and (3.35). In other words, the question is whether the spatial inhomogene-
ity observed in grown spheroids could be produced by the mechanobiological
feedback, thus amplifying the spatial perturbations of the stress to yield inho-
mogeneous growth.
To investigate this hypothesis we consider the following perturbation of the
homogeneous solution:

r(R, t) =γg0(t)R + ρ(R, t), γg0(t)R� ρ(R, t)

g(R, t) =g0(t) + δ(R, t), g0(t)� δ(R, t)

(3.42)

(3.43)
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where γ and g0(t) are solutions of equations (3.31) and (3.34), respectively, and
g0(0) = 1.
When the perturbed solutions are plugged in equations (3.31) and (3.34) and
only first order terms are retained, the following linear equations are found

(
ρ′ + 2

ρ

R

)′
= γ

3− γ2

γ2 + 1
δ′,

δ̇ =

(
1 + 2

g0

κ
− 2

g0

α
− 4

g0

κγ2

)
δ

τ
+

2
3

g0

κτγ3

(
ρ′ + 2

ρ

R

)
.

(3.44)

(3.45)

Derivation of the former equation in space, derivation of the latter in time and
cross substitution yields

δ̇′ =
(

1 + 2
g0

κ
− 2

g0

α
− 4

g0

κγ2 +
2
3

g0

κγ2
3− γ2

γ2 + 1

)
δ′

τ
(3.46)

which determines the evolution in time of the spatial perturbation in the growth
g(t). Instability shows up if

ακγ2(γ2 + 1) > 2g0

(
α

(
1 +

4
3

γ2 − γ4
)
+ κγ2 (γ2 + 1

))
, (3.47)

for some 1 < g0(t) < ge, where 0 < γ(pD) < 1.
The result (3.47) is negative versus our conjecture: it predicts a stabilization of
the system for large enough growth g0 which is not in agreement with experi-
ments. If the purely mechanical system is stable, the reported inhomogeneity
(large proliferation near the boundary, smaller internally) should instead be
explained accounting for the role of nutrients.





4 PAT T E R N F O R M AT I O N I N S O F T
M AT T E R

The main focus of this Chapter is the study of pattern formation in soft bod-
ies. Indeed, large stresses can induce topological transitions in elastic bodies as
a result of the coupling of physical or geometrical non-linearities, leading to a
partial release of the total elastic energy stored inside the bodies.

We first investigate the morphogenetic mechanism behind the tortuosity of
tumour capillaries. In Section 4.1.1, we introduce the morpho-elastic model and
we derive the basic axis-symmetric solution of the corresponding hyperelastic
problem. In Section 4.1.2, we perform a linear stability analysis of the basic
axis-symmetric solution using the method of incremental deformations super-
posed on a finite strain. In Section 4.1.3, we describe the mixed finite element
method that we have implemented to perform the numerical simulations of the
post-buckling behavior. The results of both the theoretical analysis and the nu-
merical simulations are finally discussed in Section 4.1.4, together with some
concluding remarks.

Then, in Section 4.2 we employ the theory of initially stressed materials to
study the morphological stability of a sphere with an arbitrary, radially sym-
metric, distribution of the residual stress. Firstly in Section 4.2.1, we introduce
the hyperelastic model for a pre-stressed material, defining the constitutive as-
sumptions as a function of given distributions of residual stresses. Secondly, in
Section 4.2.2 we apply the theory of incremental deformations in order to study
the linear stability of a pre-stressed solid sphere with respect to the underlying
residual stresses. Finally, in Section 4.2.3 we implement a numerical algorithm
using the mixed finite element method in order to approximate the fully non-
linear elastic solution. In the last Section we discuss the results of the linear
and non-linear analysis, together with some concluding remarks.

Finally, we study the elastic equivalent of the Rayleigh-Taylor instability. In
Section 4.3.1, we define the nonlinear elastic problem and identify its basic so-
lution. In Section 4.3.2, we perform the linear stability analysis of the problem,
deriving the marginal stability curves as a function of the elastic and geomet-
ric dimensionless parameters. In Section 4.3.3, we perform numerical simula-
tions using finite elements for studying pattern formation in the fully nonlinear
regime. In Section 4.3.4, we finally discuss the theoretical and numerical results,
adding a few concluding remarks.
The results of this Section lead to the following publications:

D. Riccobelli and P. Ciarletta. Morpho–elastic model of the tortuous tumour
vessels. International Journal of Non-Linear Mechanics, 107:1 – 9, 2018

D. Riccobelli and P. Ciarletta. Shape transitions in a soft incompressible sphere

65
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with residual stresses. Mathematics and Mechanics of Solids, 23(12):1507–1524,
2018

D. Riccobelli and P. Ciarletta. Rayleigh–Taylor instability in soft elastic layers.
Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engi-
neering Sciences, 375(2093):20160421, 2017

4.1 morpho–elastic model of the tortuous tumour
vessels

In this Section, we aim at modelling the morphogenesis of the tumour vascu-
lar network. After an initial avascular phase, a solid tumour can activate a pro-
cess known as angiogenesis, assembling its own vascular network for opening
a new access to the vital nutrients [130, 3]. These new capillaries are morpho-
logically different from normal physiological vessels. In particular, they have a
much higher spatial tortuosity and an increased permeability [195, 42] forcing
an impaired flow within the peritumoral area. These structural peculiarities
represent a major obstacle for the efficient delivery of antitumoral drugs [117].

Recently, the irregular shape of tumour capillaries has been explained as a
result of an elastic instability. More in general, several works have addressed
the problem of the stability of cylindrical structures subjected to differential
growth and geometrical constraints. In [148], Moulton and Goriely studied the
buckling of an hollow cylindrical tube subjected to a radial and circumferential
differential growth. Subsequently O’Keeffe et al. [158] addressed the problem
of the stability of a solid cylinder growing along the axial direction, embedded
into an elastic inert matrix and confined between two parallel, rigid planes. The
stability of residually stressed cylindrical structures has been further studied by
exploiting an alternative approach, prescribing the residual stress field instead
of the growth tensor [140, 60].

In [15] Araujo and McElwain have proposed a model of the growth induced
residual stress in solid tumors, assuming that the buckling of capillaries is in-
duced by the stress applied by the tumor on the vessel. A seminal morpho–
elastic model of this biological process has proved that an incompatible growth
process of the tumor intertium can explain the buckling of capillaries [136] but
not as easily their tortuosity. The aim of this work is to study the stability of
a growing hyperelastic hollow cylinder taking into account for the linear elas-
tic constraint of the surrounding interstitial matter. Contrarily to the work of
MacLaurin et al. [136], here we assume that the buckling of the tumour capil-
lary is not triggered by the growth of the surrounding tissue but by the growth
of the vessel wall.
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4.1.1 The elastic model

Let the reference configuration of the elastic body be the open set Ω0 ⊂ R3

such that

Ω0 = {X = (R cos Θ, R sin Θ, Z) | Ri < R < Ro and 0 < Z < H)} ,

representing the wall of the tumor capillary, composed by the endothelium and
the basement membrane [89], where R, Θ and Z are the cylindrical coordinates
of the material point X. We denote by ER, EΘ and EZ the orthonormal vector
basis in a cylindrical reference system.

We indicate by Ω the deformed configuration of the elastic tube and the
mapping by

ϕ : Ω0 → Ω

such that u(X) = ϕ(X)− X is the displacement vector and F = Gradϕ = ∂ϕ
∂X

be the deformation gradient.
The volumetric growth of the body is enforced by introducing a multiplica-

tive decomposition of the deformation gradient [126, 128, 181], as follows

F = FeG

so that G describes the metric distortion induced by the growth and Fe is the
elastic deformation of the material restoring the geometrical compatibility of
the current configuration.

We assume that the material is hyperelastic and incompressible, since the
tissue constituents are mostly made of water. Denoting by ψ its strain energy
density per unit volume, the first Piola–Kirchhoff and the Cauchy stress tensors
read 

P = det G
∂ψ(FG−1)

∂F
− pF−1

T =
1

det F
FP

(4.1)

where p is the Lagrangian multiplier that enforces the incompressibility con-
straint det Fe = 1.

Assuming quasi-static conditions in absence of external body forces, the bal-
ance of the linear and of the angular momentum reads

Div P = 0 in Ω0 or div T = 0 in Ω (4.2)

where Div and div denote the divergence operator in material and current
coordinates, respectively.
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The nonlinear system of equations (4.2) is complemented by the following
boundary conditions 

PT N = 0 for R = Ri

PT N = −µku for R = Ro

PT N · ER = 0 for Z = 0, H

PT N · EΘ = 0 for Z = 0, H

uZ = 0 for Z = 0, H

(4.3)

where N denotes the outer normal in the Lagrangian configuration and µk is
the linear elastic stiffness of the outer peritumoral tissue. Since the intercapil-
lary distance is much bigger than the characteristic diameter of the capillary,
we indeed assume that the outer tissue exerts a linear elastic response that is
simplified by an isotropic spring foundation.

4.1.1.1 Constitutive assumptions and basic axis-symmetric solution

We assume that the tube is composed of an incompressible neo–Hookean
material, thus the strain energy ψ is given by

ψ(F) =
µ

2
(I1 − 3) =

µ

2
(
λ2

1 + λ2
2 + λ2

3 − 3
)

(4.4)

where I1 is the trace of the right Cauchy–Green tensor C = FTF and λi are the
eigenvalues of the deformation gradient. We can write the Cauchy stress tensor
(4.1) as

T = µFG−1G−TFT − pI (4.5)

where I is the identity tensor. We further assume that the growth tensor G has
the form

G = diag(1, 1, γ), (4.6)

so that the elastic tube grows along the axial direction. We look for a solution
of the form

ϕ(X) = r(R)ER + ZEZ.

We denote by ri = r(Ri) and ro = r(Ro). For the sake of simplicity, in the fol-
lowing we omit the explicit dependence of r on the variable R. The deformation
gradient is given by

F = diag
(

r′,
r
R

, 1
)

(4.7)

Considering the equations (4.6) and (4.7), the incompressibility constraint
det Fe = 1 leads to the following differential equation

r′r = γR (4.8)

so that
r =

√
γ(R2 − R2

i ) + r2
i . (4.9)
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By enforcing the global incompressibility constraint in Eq.(4.9), we get

ro =
√

γ(R2
o − R2

i ) + r2
i . (4.10)

The inverse of Eq. (4.9) reads:

R =

√
r2 − r2

i
γ

+ R2
i ,

so that, from (4.8), we get:

r′ =
γR
r

=

√
γ
(
r2 − r2

i

)
+ γ2R2

i

r
. (4.11)

From (4.5), (4.6) and (4.7) the Cauchy stress tensor reads

T = Trrer ⊗ er + Tθθeθ ⊗ eθ + Tzzez ⊗ ez

where er, eθ and ez constitute the local orthonormal vector basis of the actual
configuration in cylidrical coordinates and

Trr(r) = µr′2 − p,

Tθθ(r) = µ
r2

R2 − p,

Tzz(r) = µ
1

γ2 − p.

In cylindrical coordinates, the balance of the linear and angular momentum
(4.2) reads

dTrr

dr
+

Trr − Tθθ

r
= 0; (4.12)

with the following boundary conditions (4.3):
Trr(0) = 0 for r = ri

Trr(ro) = −µk
Ro

ro
(ro − Ro) for r = ro

(4.13)

Making use of (4.13), we can integrate the equation (4.12) from r = ri to
r = ro, obtaining

µk
Ro

ro
(ro − Ro) =

∫ ro

ri

Trr(r)− Tθθ(r)
r

dr,

so that, together with the equation (4.10), we obtain an equation for ri which can
be solved numerically if we fix the ratio Ro/Ri and the axial growth parameter
γ.
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Finally, we integrate the equation (4.12) from ri to r in order to determine the
Lagrangian multiplier p, so that

p = µr′2 +
∫ r

ri

Trr(s)− Tθθ(s)
s

ds.

The latter integral can be computed analytically, obtaining

p(r) =
1
2

γµ

(
γR2

i − r2
i

r2 − log
(
r2 − r2

i + γR2
i
)
+ 2 log(r)+

+
γR2

i

r2
i
− 2 log(ri) + log

(
γR2

i
)
+ 1
)

.
(4.14)

Thus, we have found a basic axis-symmetric solution of the boundary value
problem, that is given by Eqs.(4.9,4.14)

In the following, we study its marginal stability as a function of the control
parameter γ denoting the local volumetric growth along the axial direction.

4.1.2 Linear stability analysis

In this Section we study the linear stability of the finitely deformed tube by
using the method of incremental deformations superposed on a finite strain
[156].

We rewrite the incremental boundary value problem into a more convenient
form called Stroh formulation and we implement a numerical method based
on the impedance matrix method to solve it.

4.1.2.1 Incremental boundary value problem

We denote the incremental displacement field δu. Let Γ = grad δu, we intro-
duce the push-forward of the incremental Piola–Kirchhoff stress in the finitely
deformed configuration of the axis-symmetric solution, that is given by

δP0 = A0 : Γ + pΓ− δpI, where (A0 : Γ)ij = A0ijhkΓkh, (4.15)

where A0 is the fourth order tensor of instantaneous elastic moduli, δp is the
increment of the Lagrangian multiplier that imposes the incompressibility con-
straint, and the convention of summation over repeated indices is adopted.

The components of the tensor A0 for a neo–Hookean material, are given by

A0ijhk = µδjk(Be)ih = µδjkδih(λ
e
i )

2
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where Be = FeFT
e , λe

i are the eigenvalues of the tensor Fe = FG−1. Considering
the growth tensor (4.6),the deformation gradient (4.7) and the equation (4.11),
such eigenvalues are given by

λe
1 = r′ =

√
γ
(
r2 − r2

i

)
+ γ2R2

i

r
,

λe
2 =

r
R

=
γr√

γ
(
r2 − r2

i

)
+ γ2R2

i

,

λe
3 =

1
γ

.

The incremental form of the balance of the linear momentum and of the
incompressibility constraint are given by{

div δP0 = 0, in Ω,

tr Γ = 0 in Ω.
(4.16)

This system of partial differential equations is complemented by the follow-
ing boundary conditions

δPTer = 0 for r = ri

δPTer = −µk
Ro

ro
δu for r = ro

δPer · er = 0 for z = 0, H

δPTer · eθ = 0 for z = 0, H

δuz = 0 for z = 0, H.

(4.17)

where er, eθ and ez is the vector basis in cylindrical coordinates in the actual
configuration.

To implement a robust numerical method, we employ a method which is
different to the one used in [158] where the authors studied the stability of
a growing solid cylinder surrounded by an elastic tube. We reformulate the
boundary value problem given by the equations (4.16)–(4.17) by using the Stroh
formulation.

4.1.2.2 Stroh formulation

We denote with u, v and w the components of δu in cylindrical coordinates.To
reduce the system of partial differential equations (4.16) to a system of ordinary
differential equations, we assume the following ansatz [136]:

u(r, θ, z) = U(r) cos(mθ) cos(kz),

v(r, θ, z) = V(r) sin(mθ) cos(kz),

w(r, θ, z) = W(r) cos(mθ) sin(kz),
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where m ∈N and k ∈ R with k ≥ 0.
Following the method exposed in [22], we consider the components δPrr, δPrθ

and δPrz as additional unknowns. We assume then that

δPrr(r, θ, z) = prr(r) cos(mθ) cos(kz),

δPrθ(r, θ, z) = prθ(r) sin(mθ) cos(kz),

δPrz(r, θ, z) = prz(r) cos(mθ) sin(kz).

(4.18)

(4.19)

(4.20)

We substitute (4.18) into (4.15) obtaining the following expression for δp:

δp =
γµU′(r)

(
γR2

i
(
r2 + 3r2

i
)
+ r2r2

i
(
− log

(
r2 − r2

i + γR2
i
)
+ 2 log(r)− 2 log(ri) + log

(
γR2

i
)))

2r2r2
i

+
3γµU′(r)(r− ri)(r + ri)

2r2 − prr(r)

We introduce the displacement-traction vector η as

η = [U, rT ] where

{
U = [U, V, W] ,

T = [prr, prθ , prz] .
(4.21)

By using a well-established procedure [197], exploiting the incremental con-
stitutive relations (4.15), we can rewrite the incremental system of partial differ-
ential equations (4.16) as

dη

dr
=

1
r

Nη (4.22)

where N ∈ R6×6 is the Stroh matrix; the expressions of its components are
reported in the appendix. In particular, we can identify four sub-blocks

N =

[
N1 N2

N3 N4

]
such that Ni ∈ R3×3 and N1 = −NT

4 , N2 = NT
2 , N3 = NT

3 .

4.1.2.3 Impedance matrix method

The system of ordinary differential equations gien by Eq. (4.22) is numer-
ically solved using the impedance matrix method [32, 33]. We introduce the
matricant

M(r, ri) =

[
M1(r, ri) M2(r, ri)

M3(r, ri) M4(r, ri)

]
, M ∈ R6×6

called conditional matrix. Such a matrix is a solution of the problem
d
dr

M(r, ri) =
1
r

NM(r, ri),

M(ri, ri) = I.
(4.23)

It is easy to verify that the solution of the Stroh equation (4.22) is given by

η(r) = M(r, ri)η(ri). (4.24)
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Since T(ri) = 0, exploiting the relation (4.24), we can define the conditional
impedance matrix Z(r, ri) [155] as

Z(r, ri) = M3(r, ri)M
−1
1 (r, ri). (4.25)

For the sake of simplicity we omit the explicit dependence of Z on r and ri.
Such a matrix satisfy the following relation

rT = ZU ∀r ∈ (ri, ro).

Thus, we can observe that the Stroh system (4.22) can be written as

dU
dr

=
1
r
(N1 + N2Z)U,

dZ

dr
U + Z

dU
dr

=
1
r
(N3 + N4Z)U.

(4.26)

(4.27)

We now can substitute (4.26) in (4.27) obtaining a Riccati differential equation

dZ

dr
=

1
r
(N3 + N4Z− ZN1 − ZN2Z); (4.28)

As a starting condition, considering (4.23) and the definition of surface impe-
dance matrix (4.25), we set

Z(ri, ri) = 0.

The boundary condition in (4.17) linked to the presence of the springs at
r = ro can be written as

T = −µk
Ro

ro
U

so that
(Z + µkRoI)U = 0

Non-null solutions of the incremental problem exist if and only if

det (Z + µkRoI) = 0. (4.29)

For a fixed value of the control parameter γ we integrate the Riccati equation
(4.28) from r = ri up to r = ro making use of the software Mathematica

(ver. 11.2, Wolfram Research, Champaign, IL, USA). We iteratively increase the
control parameter γ until the stop condition (4.29) is satisfied.

4.1.2.4 Marginal stability thresholds and critical modes

In this Section we discuss the results of the linear stability analysis.
Setting µk = 0, we neglect the elastic contribution of the surrounding matter,
thus dealing with a classical problem of Euler buckling. The corresponding
marginal stability curves are depicted in Fig. 4.1, in quantitative agreement
with the results obtained by Goriely and co-workers [96]. As expected, the
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Figure 4.1: Marginal stability curves kRo versus γ when the elastic constant of the
springs is µk = 0, the aspect ratio αR is equal to 0.5 (top) and 0.8 (bottom).
The circumferential wavenumber m varies from 0 (light line) up to 4 (dark
line), the arrow denotes the direction in which m increases.

marginal stability threshold tends to γ = 1 for m = 1 and k̃ tends to zero, i.e.
the critical mode is the one with infinite wavelength along the axial direction.

the presence of an elastic foundation at the outer surface of the capillary dras-
tically changes this limiting behavior of Euler buckling. The elastic boundary
value problem is governed by the following the dimensionless parameters:

k̃ = kRo, αk =
µkRo

µ
, αR =

Ri

Ro
,

where k̃ represents the dimensionless axial wavenumber, αk is the ratio between
the surface and bulk elastic energies, and αR is the geometrical aspect ratio of
the tube.

The radius of a tumour capillary measures 5.1± 0.7 µm while its length 66.8±
34.2 µm [129]. Thus, for a given length L, the admissible axial wavenumber k̃
are given by

k̃ = nπ
Ro

L
n ∈N

for the sake of simplicity, in the following we consider k̃ continuous since the
slenderness ratio is small.

In Fig. 4.2 we report the marginal stability curves when αk = 0.01. These
marginal stability curves tend to the ones plotted in Fig. 4.1 where kRo is large.
However, a different behavior arises in the limit where kRo tends to zero, espe-
cially since the marginal stability threshold γ now goes to infinity for m = 1.

This effect is even more evident by setting αk = 1, as sketched in Fig. .
For each fixed value of the dimensionless parameter αk, we define the critical

value γcr as the minimum value of the marginal stability curves γ versus k̃ for
all the circumferential wavenumber m. The corresponding axial and circumfer-
ential critical modes are denoted by k̃cr and mcr, respectively.

We plot the critical modes in Fig. 4.4 for two different values of the aspect
ratio, αR = 0.5 (left) and 0.8 (right). In both cases the critical axial wavenumber
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Figure 4.2: Marginal stability curves k̃ versus γ when αk = 0.01, the aspect ratio αR
is equal to 0.5 (top) and 0.8 (bottom). The circumferential wavenumber m
varies from 0 (light line) up to 4 (dark line), the arrow denotes the direction
in which m increases.
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Figure 4.3: Marginal stability curves k̃ versus γ when αk = 1, the aspect ratio αR is
equal to 0.5 (top) and 0.8 (bottom). The circumferential wavenumber m
varies from 0 (light line) up to 4 (dark line), the arrow denotes the direction
in which m increases.
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Figure 4.4: Plots of the critical wavenumbers mcr and k̃cr versus αk for αR = 0.5 (left)
and αR = 0.8 (right).
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Figure 4.5: Plots of the critical values of the control parameter γcr versus αk for αR =
0.5 (left) and αR = 0.8 (right).

k̃cr is increasing as αk increases, highlighting discrete changes of the critical
circumferential wavenumber.

Also the critical value of the control parameter γcr is an increasing function
of the dimensionless parameter αk as shown in the plots of Fig. 4.5.

We also compute the dimensionless critical load τ that is applied on the top
surface in order to enforce the torsion through the application of a surface
traction at the tube top and bottom ends. Let S = {X ∈ Ω | Z = H}, this
critical load is given by:

τ = − 1
µR2

o

∫
S

PZZdS = − 1
µR2

o

∫
S

(
µ

γ2 − p
)

dS.

where γcr is the marginal stability threshold and Lcr = πRo/k̃cr is half of the
critical wavelength.

In Fig. 4.6 we plot τ versus αk for αR = 0.5 and 0.8. In both cases, the
critical load is a decreasing function of αk, so the presence of the outer elastic
confinement has a stabilizing effect, whilst thinner tubes always require lower
critical loads.
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Figure 4.6: Plots of the dimensionless critical load τ vs αk for αR = 0.5 (left) and
αR = 0.8 (right).

4.1.3 Post-buckling behaviour

In order to study the behavior of the buckled configuration far beyond the
marginal stability threshold, we have implemented a finite element code to
discretize and numerically solve the fully nonlinear boundary value problem
given by (4.2)–(4.3).

4.1.3.1 Finite-element implementation

To break the axial symmetry of the problem, we numerically solve the bound-
ary value problem only on half cylinder whose height is half of the critical axial
wavelength:

Ωc =

{
X = (X, Y, Z)

∣∣∣∣ Ri

Ro
<
√

X2 + Y2 < 1 ∩ 0 < Z <
π

k̃cr
∩ Y > 0

}
.

where k̃cr is the critical dimensionless wave-number arising from the linear
stability analysis presented in Section 4.1.2 and (EX, EY, EZ) is the cartesian or-
thonormal vector basis. We discretize this domain by using a tetrahedral mesh
composed by 93398 elements. We used the Taylor–Hood P2–P1 element, i.e. the
displacement field is given by a continuous, piecewise quadratic function while
the pressure field by a continuous, piecewise linear function. The choice of this
particular element is motivated by its stability for non-linear elastic problems
[18]. Since we have only considered a half tube, we complement the boundary
conditions (4.3) by adding the following equations

PTEY · EX = 0 for Y = 0,

PTEY · EZ = 0 for Y = 0,

uY = 0 for Y = 0.

The numerical algorithm is based on a Newton continuation method [188],
the control parameter γ being incremented starting from 1 with an automatic
adaptation of step if the Newton method does not converge.
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Figure 4.7: Bifurcation diagram where we show the dimensionless parameter ∆l/Ro
versus the control parameter γ when αk = 0.01, αR = 0.5. The numerical
simulation is validated against the marginal stability threshold computed
with the linear stability analysis (orange triangle, γcr = 1.1103).

Figure 4.8: Actual configuration of the buckled tube for γ = 1.2 (left), γ = 1.5 (center),
γ = 1.89 (right) when αk = 0.01, αR = 0.5. In such conditions γcr = 1.1103.

In order to follow the bifurcated branch, a small perturbation is imposed at
the outer boundary of the cylinder according to the critical mode arising from
the linear stability analysis [41, 188]. The amplitude of such an imperfection is
set to 0.005 Ro.

The method is implemented in Python through the open source computing
platform FEniCS [134]. As a linear algebra back–end we used PETSc [20], the
linear Newton iteration is solved in parallel through MUMPS [13].

4.1.3.2 Numerical results

In this Section we show the results of the numerical simulations for αR = 0.5
and αk = 0.01. In this case, the critical mode is given by k̃cr = 0.44, mcr = 1 and
the critical threshold is γcr = 1.1076.
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Figure 4.9: Actual configuration of the buckled tube for γ = 1.89. We can notice that
the lumen is minimum where the tube has maximum curvature.

We define ∆l as the average integral of the displacement along the direction
EX on the top surface S , namely

∆l =

∫
S uX dS

π(R2
o − R2

i )
.

Such a quantity represents a measure of the displacement of the top surface
of the half-cylinder in the direction orthogonal to the axis of the cylinder and
parallel to the plane Y = 0. Since we broke the axial symmetry of the problem
by considering an half cylinder only, this is the only plane of symmetry.

In Fig. 4.7 we plot ∆l/Ro versus γ. The numerical results are in agreement
with the numerical outcomes, this bifurcation diagram highlights the presence
of a supercritical pitchfork bifurcation.

We show the actual configuration of the elastic tube for several values of the
control parameter γ in Fig. 4.8. In all the cases, there is a thinning of the tube
and a reduction of the lumen in the regions where the curvature is higher as
shown in Fig. 4.9.

The numerical method does not converge near the theoretical marginal sta-
bility threshold if αk is large, probably because the bifurcation becomes subcrit-
ical. The improvement of the numerical algorithm is beyond the scope of this
work; future works will aim at implementing an arclength continuation method
which can also capture the behavior of subcritical bifurcations.

If we consider a tube of length 4π/k̃cr ' 28.55 with αk = 0.01 we obtain
a slenderness ratio which is compatible with the experimental measurements
[129]. In Fig. 4.10 we plot the evolution of the tortuosity of the capillary, we
observe again that the lumen is minimum in regions where the curvature of
the cylinder wall is maximum.
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Figure 4.10: Deformed configuration when αk = 0.01, H/Ro = 4π/k̃cr ' 28.55 and
γ = 1, 1.2, 1.5, 1.89. The corresponding marginal stability threshold is
given by γcr = 1.1103.

4.1.4 Discussion and concluding remarks

In this Section, we have proposed a morpho–elastic model of the tortuous
shape of tumour vessels.

In Section 4.1.1, we have assumed that the tumour capillary is composed of a
incompressible neo–Hookean material, and it behaves as a growing hyperelastic
tube that is spatially constrained by a linear elastic environment, representing
the surrounding interstitial matter. We have modeled the growth by using the
multiplicative decomposition of the deformation gradient, assuming an incom-
patible growth along the axial direction, due to the spatial confinement applied
at both ends.

In Section 4.1.2, we have derived a linear stability analysis on the basic axis–
symmetric solution using the method of incremental deformations superposed
on finite strains [156]. In order to build a robust numerical method, we ex-
ploited the Stroh formulation and the impedance matrix method in order to
reduce the incremental boundary value problem to a differential Riccati equa-
tion (4.28).

The control parameter of the bifurcation is the axial growth rate γ, whose
critical value is governed by two dimensionless parameters αR and αk, repre-
senting the geometrical aspect ratio and the ratio between the energy exerted
by the surrounding matter and the bulk strain energy of the capillary, respec-
tively.



4.1 morpho–elastic model of the tortuous tumour vessels 81

The results of the linear stability analysis are collected in Figures 4.1–4.6.
Slender capillaries are found having a lower threshold of marginal stability. On
the contrary, when increasing αk we find that the overall axial traction load ex-
erted at the tube ends also increases, finding the Euler buckling as the limiting
behavior for αk → 0 [96]. Interestingly, we find that the linear elastic constraint
of the surrounding matter favours the occurrence of short-wavelength critical
modes, thus explaining the tortousity of the observed tumour vessels.

The post-buckling behavior is studied implementing numerical simulation
using a mixed finite-element method. The numerical algorithm is based on
a Newton based continuation method with an adaptive increment of the con-
trol parameter. We considered a physiological geometry for a tumour cap-
illary from referenced literature. The corresponding numerical simulation is
validated against the linear stability threshold, showing that the bifurcation is
supercritical, as depicted in Fig. 4.7. The emerging morphology of the buckled
vessel is illustrated in Figs. 4.8–4.10. The tortuousity of the capillary is also
characterized by lumen restrictions in the localised regions where the capillary
reaches its maximum curvature. This suggests that the elastic bifurcation trig-
gers a significant change in the flow properties inside the vessel.

In summary, the results of this Section show that the tortuosity of the tumour
vascular network is mainly driven by the elastic confinement of the interstitial
matter where it is embedded. The emerging short-wavelength buckling is simi-
lar as the one observed for micro-tubules immersed in the cytosol [37] and for
a growing solid cylinder surrounded by an inert elastic tube [158]. We remark
that modelling the interstitial matter with linear springs is a very simplificative
assumption. Thus, future developments will focus on taking into account for
the nonlinear response of the tumour interstitium, possibly including the pres-
ence of residual stresses. Moreover, we will investigate the nonlinear effects of
the simultaneous buckling of several neighboring capillaries in different spa-
tial networks. The continuation method in numerical simulations shall also be
improved in order to compute the full bifurcation diagram. [188, 82]. Finally,
introducing an elastic-fluid coupling will allow us to quantify how the capillary
tortuosity influences the inner fluid transport, possibly leading to new insights
for optimizing drug delivery withing solid tumors [19, 47].

4.1.5 Appendix – Expressions of the components of the Stroh matrix

The expression of the sub-block N1 of the Stroh matrix is given by

N1 =

 −1 −m −kr
1
2 mν1

−r2+2r′2R2+r2
i

2r′2R2 + log(r)− log(ri) 0
1
2 krν1 0 0


where

ν1 =

(−r2 + 2r′2R2 + r2
i

r′2R2 + 2 log(r)− 2 log(ri)

)
.
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The sub-block N2 reads

N2 =

0 0 0
0 1

r′2µ
0

0 0 1
r′2µ

 .

Finally the sub-block N3 is given by

N3 =

N41 N42 N43

N42 N52 N53

N43 N53 N63


where

N41 =
k2µr2

γ2 −

((
r4 − 2

(
4r′2R2 + r2

i
)

r2 +
(
2r′2R2 + r2

i
)2
)

m2
)

µ

4r′2R4 +

+

(
k2r2 (−r2 + 2r′2R2 + r2

i
)2 − 4r′2R2 (3r′2R2 + r2

i
))

µ

4r′2R4 +

+
µ
(
2r′2R2 − r′2

(
m2 + k2r2) (log(r)− log(ri))R2) (log(r)− log(ri))

R2 +

+
µ
((

m2 + k2r2) (r2 − 2r′2R2 − r2
i
))

(log(r)− log(ri))

R2

N42 =
mµ
(
−r4 + 2

(
4r′2R2 + r2

i
)

r2 + 8r′4R4 − r4
i
)

4r′2R4 +

+
mµ
(
4r′2R2(log(r)− log(ri))

(
r′2(log(ri)− log(r))R2 + (r− ri)(r + ri)

))
4r′2R4

N43 =
krµ

(
−r2 + 4r′2R2 + r2

i + 2r′2R2(log(r)− log(ri))
)

2R2

N52 =
(

3m2 − 1
)

µr′2 +
(
2r2 +

(
m2 − 1

)
r2

i
)

µ

R2 +
k2r2µ

γ2 +

+
µ(log(r)− log(ri))

(
r2 + 2r′2

(
m2 − 1

)
R2 − r2

i + r′2R2(log(ri)− log(r))
)

R2 +

−
(
r2 − r2

i
)2

µ

4r′2R4

N53 =
kmrµ

(
−r2 + 3r′2R2 + r2

i + 2r′2R2(log(r)− log(ri))
)

R2

N63 =
r2µ

((
R2 +

(
−r2 + 3r′2R2 + r2

i
)

γ2) k2)
R2γ2 +

+
r2µ

(
2r′2R2γ2(log(r)− log(ri))k2 + m2γ2)

R2γ2
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4.2 shape transitions in a soft incompressible
sphere with residual stresses

As exposed in Section 3.2, inhomogeneous growth processes generate resid-
ual stresses in solid tumours. More in general, residual stresses result from
the presence of microstructural misfits, for example after plastic deformations
(e.g. in metals) or thermal processes (e.g. quick solidification in glass). In-
deed, it is well acknowledged that there exists a mechanical feedback in many
biological processes. Living tissues can adapt their structural response to the
external mechanical stimuli by generating residual stresses either in physiolog-
ical conditions (e.g. within arteries or the gastro-intestinal tract [53, 74, 213])
or pathological situations (e.g. solid tumors [198, 72, 10]). Moreover, residual
stresses can accumulate reaching a critical threshold beyond which a morpho-
logical transition is triggered, possibly leading to complex pattern formation,
such as wrinkling, creasing or folding [131, 57].

Several studies about mechanical instabilities in soft materials with a spher-
ical shape have been carried out in the last decades. The stability of spherical
elastic shells has been studied with respect to the application of an external
[214, 211] or internal pressure [108, 103]. More recently, the influence of resid-
ual stresses on stability in growing spherical shells [26] as well as in spherical
solid tumor [55] has been addressed.

Residual stresses are classically modeled by exploiting the theory of elastic
distortions, i.e. decomposing multiplicatively the deformation gradient [181].
The main drawback of this method is the necessity of the a priori knowledge of
the relaxed state, since it is not often physically accessible [75]. Indeed, from an
experimental viewpoint, its determination would require several cuttings (ide-
ally infinite) on the elastic body in order to release all the underlying residual
stresses.

Instead, in this Section we employ the theory of initially stressed materials
to study the morphological stability of a sphere with an arbitrary, radially sym-
metric, distribution of the residual stress.

4.2.1 The elastic model

Let us consider a soft residually-stressed solid sphere composed of an incom-
pressible hyperelastic material in a reference configuration Ω ⊂ E3, where E3

is the three-dimensional Euclidean space. We use a spherical coordinate system
in the reference configuration so that the material position vector is given by

X = (R sin(Θ) cos(Φ), R sin(Θ) sin(Φ), R cos(Θ))

where R is the radial coordinate, Θ is the polar angle and Φ is the azimuthal
angle.
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We define the domain Ω as the set such that

Ω =
{

X ∈ E3 | R < Ro
}

,

so that Ro is the radius of the solid sphere. We indicate with eR, eΘ and eΦ the
local orthonormal vector basis.

4.2.1.1 Constitutive assumptions

Indicating with x = ϕ(X) the spatial position vector, so that ϕ is the deforma-
tion field, we assume that the strain energy density of the body ψ is a function
depending on both the deformation gradient F = Gradϕ and the Cauchy stress
Σ in the reference configuration (i.e. the residual stress [109]):

ψ = ψ(F, Σ), (4.30)

as previously proposed in [161, 189].
Hence, the first Piola–Kirchhoff stress tensor P and the Cauchy stress tensor

T are given by

P(F, Σ) =
∂ψ

∂F
(F, Σ)− pF−1, T(F, Σ) = FP (4.31)

where p is the Lagrangian multiplier that enforces the incompressibility con-
straint det F = 1.

Hence, the fully non-linear problem in the quasi-static case reads

Div P = 0. (4.32)

where Div denotes the divergence operator in material coordinates; the bound-
ary conditions are

PTeR = 0 when R = Ro (4.33)

where u(X) = ϕ(X)− X is the displacement vector field.
When we evaluate the Piola–Kirchhoff stress in the reference configuration,

we obtain the residual stress Σ, i.e. setting F equal to the identity tensor I in
Eq. (4.31), we get

Σ =
∂ψ

∂F
(I, Σ)− p0I; (4.34)

this relation represents the initial stress compatibility condition [189, 97, 98], where
p0 is a scalar field corresponding to the pressure field in the unloaded case.

Moreover, since Σ is the Cauchy stress tensor in the reference configuration,
the balance of the linear and the angular momentum impose

Div Σ = 0, Σ = ΣT in Ω, (4.35)

together with the following boundary conditions

ΣRR = ΣΘR = ΣΦR = 0 for R = Ro. (4.36)
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From Eqs. (4.35)-(4.36), it is possible to prove that [110]∫
Ω

Σ dL3(X) = 0,

so that the residual stress field must be inhomogeneous, with zero mean value.
We also assume that the strain energy density depends on the choice of the

reference configuration only through the functional dependence on Σ. Thus,
we impose the initial stress reference independence (see [97, 98] for further details),
reading

ψ (F1F2, Σ) = ψ (F1, T (F2, Σ)) . (4.37)

The Eq. (4.37) must hold for all second order tensor F1, F2 with positive
determinant and for all the symmetric tensors Σ.

The general material with a strain energy given by Eq. (4.30), such that the
material behaviour is isotropic in absence of residual stress, i.e. for Σ = 0, may
depend up to ten independent invariants [189].

A simple possible choice for the strain energy density which satisfies both
the initial stress compatibility condition and the initial stress reference indepen-
dence is the one corresponding to an initially stressed neo–Hookean material. The
strain energy of such material is constructed so that if a virtual relaxed state
exists [119], then it naturally behaves as a neo–Hookean material with a given
shear modulus µ. In the following we briefly sketch how this strain energy is
obtained (see [97] for a detailed derivation).

Let us introduce the following five invariants:

I1 = tr C, J1 = tr (ΣC) , IΣ1 = tr Σ, IΣ2 =
(tr Σ)2 − tr Σ2

2
, IΣ3 = det Σ,

where C = FTF is the right Cauchy–Green tensor.
Assuming that the material behaves as an incompressible neo-Hookean body,

its strain energy density is given by

ψ(F, Σ) =
µ

2
(tr(B̃C)− 3), (4.38)

here C is the right Cauchy-Green strain tensor, F̃ is the deformation gradient
from the virtual unstressed state to the reference configuration, B̃ = F̃F̃T and µ

is the shear modulus of the material in absence of residual stresses.
So, substituting Eq. (4.38) in Eq. (4.31), the initial stress Σ is given by

Σ = µB̃− p̃I. (4.39)

Imposing the incompressibility constraint on the deformation gradient F̃, we
get det(µB̃) = µ3 = det(Σ + p̃I). Thus, p̃ is the real root of the following
polynomial:

p̃3 + p̃2 IΣ1 + p̃IΣ2 + IΣ3 − µ3 = 0. (4.40)
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Hence, multiplying Eq. (4.39) by C on the right and taking the trace on both
sides, we obtain

tr(S̃C) = µ tr(B̃C)− p̃I1. (4.41)

Substituting Eq. (4.41) in Eq. (4.38), we obtain the strain energy of an initially
stressed Neo–Hookean body:

ψ (I1, J1, IΣ1, IΣ2, IΣ3) =
1
2
(J1 + p̃I1 − 3µ). (4.42)

where p̃ is the only real root of Eq. (4.40). It is given by [97]

p̃ =
1
3

[
T3 +

T1

T3
− IΣ1

]
,

where
T1 = I2

Σ1 − 3IΣ2,

T2 = I3
Σ1 −

9
2

IΣ1 IΣ2 +
27
2
(

IΣ3 − µ3) ,

T3 =
3

√√
T2

2 − T3
1 − T2.

In this setting, it is possible to prove that the pressure field in the reference
configuration is given by p = p̃ [97].

In the following, we use symmetry arguments to discuss a few possible
choices for the distribution of the residual stresses.

4.2.1.2 Residual stress distribution

We assume that the residual stress Σ depends only on the variable R. Hence
the system of equations given by Eq. (4.35) reduces to

∂ΣRR

∂R
+

2
R
(ΣRR − ΣΘΘ) = 0,

ΣRΘ = ΣRΦ = ΣΘΦ = 0;
. (4.43)

Then, being f (R) the radial component of the residual stress, the tensor Σ is
given by

Σ = diag
(

f (R),
R
2

f ′(R) + f (R),
R
2

f ′(R) + f (R),
)

where f : [0, Ro] → R is such that f (Ro) = 0 in order to satisfy automatically
Eq. (4.43).

In the following, we will focus on two possible choices for the function f :

case (a) : f (R) = αµ
Rβ − Rβ

o

Rβ
o

,

case (b) : f (R) = αµ

(
R
Ro

)γ

log
(

R
Ro

)
,

(4.44)

(4.45)
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Figure 4.11: Plot of the radial (solid line) and hoop (dashed line) residual stress com-
ponents normalized with respect to α µ when f (R) is given by Eq. (4.44)
(left) f (R) is given by Eq. (4.45) (right). Both the dimensionless parame-
ters β and γ are set equal to 2.

where α, β and γ are real dimensionless parameters with β, γ > 1. The corre-
sponding residual stress components are depicted in Fig. 4.11.

In the next Section we apply the theory of incremental deformations in order
to study the stability of the residually stressed configuration with respect to the
magnitude of the underlying residual stresses expressed by the dimensionless
parameters α, β and γ.

4.2.2 Incremental problem and linear stability analysis

4.2.2.1 Structure of the incremental equations

In order to study the linear stability of the undeformed configuration with
respect to the intensity of the residual stresses, we use the method of the incre-
mental elastic deformations [156]. We denote with δu the incremental displace-
ment vector and with Γ the gradient of the vector field δu, namely Γ = Grad δu.

The linearized incremental Piola–Kirchhoff stress tensor reads

δP = A1
0 : Γ + pΓ− qI (4.46)

where q is the increment of the Lagrangian multiplier p and(
A1

0 : Γ
)

ij
:= A1

0ijhkΓkh =
∂2ψ

∂Fji∂Fkh

∣∣∣∣
F=I

Γkh,

with A0 being the fourth order tensor of the elastic moduli, and summation
over repeated subscripts is assumed.

From Eq. (4.42) and following [189], we get

A1
0ijhk = δjk(2ψ,I1 δih + Σih),

where δij is the Kronecker delta the comma denotes the partial derivative.
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Hence, the incremental equilibrium equation is given by

Div δP = 0, (4.47)

and the boundary conditions read

δPTeR = 0 at R = Ro. (4.48)

The incompressibility of the incremental deformation is given by the con-
straint

tr Γ = 0. (4.49)

We assume an axis-symmetric incremental displacement vector given by

δu = u(R, Θ)eR + v(R, Θ)eΘ.

This choice is motivated by the fact that, imposing a general incremental dis-
placement vector, the resulting governing equations in the azimuthal direction
decouple [214, 211], thus not influencing the linearized bifurcation analysis.

Hence, the incremental displacement gradient is given by

Γ =


u,R

u,Θ−v
R

0

v,R
u + v,Θ

R
0

0 0
u + cot(Θ)v

R

 .

In order to build a robust numerical procedure to solve the incremental
boundary value problem, we first rewrite Eqs. (4.47)-(4.49) using a more conve-
nient form, known as Stroh formulation.

4.2.2.2 Stroh formulation

Since the residually stressed material is inhomogeneous only in the radial
direction, we study the bifurcation problem by assuming variable separation
for the incremental fields [154], namely

u(R, Θ) = U(R)Pm(cos Θ),

v(R, Θ) = V(R)
1√

m(m + 1)
dPm(cos Θ)

dΘ
,

δPRR(R, Θ) = sRR(R)Pm(cos Θ),

δPRΘ(R, Θ) = sRΘ(R)
1√

m(m + 1)
dPm(cos Θ)

dΘ
,

(4.50)

(4.51)

(4.52)

(4.53)

where Pm(Θ) denotes the Legendre polynomial of order m.
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In order to write the incremental boundary value problem Eqs. (4.47)-(4.49) in
the Stroh formulation, we introduce the displacement-traction vector η, defined
as

η(R) =
[

U(R)
R2T(R)

]
, where U(R) =

[
U(R)
V(R)

]
, T(R) =

[
sRR(R)
sRΘ(R)

]
.

An expression for q is found by substituting Eq. (4.46) in Eq. (4.52), so that

q = Pm(cos(Θ))
(
U′(R) (2ψ,I1 + f (R) + p)− δPRR(R)

)
. (4.54)

Thus, using a well established procedure [197], we can use the definition of
the linearized incremental Piola–Kirchhoff given by Eq. (4.46), the incremental
equilibrium equations given by Eq. (4.47) and the linearized incompressibility
constraint Eq. (4.49) to obtain a first order system of ordinary differential equa-
tions, namely

dη

dR
=

1
R2 Nη, (4.55)

where N(R) is the Stroh matrix which has the following structure

N =

(
N1 N2

N3 −NT
1

)
,

where the sub-blocks read:

N1 =

 −2R
√

m(m + 1)R

−
√

m(m+1)pR
f (R)+2ψ,I1

pR
f (R)+2ψ,I1

 , N2 =

(
0 0
0 1

f (R)+2ψ,I1

)
,

N3 =

(
ν1 ν2

ν2 ν3

)
.

The expressions for the coefficients ν1, ν2 and ν3 are given by:

ν1 =
R2((2ψ,I1 + f (R))(4(m2 + m + 6)ψ,I1 +(m2 + m + 2)R f ′(R)

2(2ψ,I1 + f (R))
+

+
2(m2 + m + 6) f (R) + 12p)− 2m(m + 1)p2)

2(2ψ,I1 + f (R))
,

ν2 =
R2
√

m(m + 1)
(

p2 − (2ψ,I1 + f (R)) (8ψ,I1 +R f ′(R) + 4 f (R) + 3p)
)

2ψ,I1 + f (R)
,

ν3 =
R2 (2ψ,I1 + f (R)) (m(m + 1) (8ψ,I1 +R f ′(R) + 4 f (R)) + 2(2m(m + 1)− 1)p)

2 (2ψ,I1 + f (R))
+

− 2R2 p2

2 (2ψ,I1 + f (R))
.

In the next Section, we solve the Eq. (4.55) by using the impedance matrix
method.
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4.2.2.3 Impedance matrix method

Let us briefly sketch the main theoretical aspects of this method [32, 33]. We
define a linear functional relation between U and T , namely

R2T = ZU. (4.56)

where Z is the so called surface impedance matrix.
By substituting Eq. (4.56) in Eq. (4.55), we obtain

dU
dR

=
1

R2 (N1U + N2ZU),

dZ

dR
U + Z

dU
dR

=
1

R2 (N3U + N4ZU).

(4.57)

(4.58)

Thus, by substituting Eq. (4.57) in Eq. (4.58), a Riccati differential equation is
found for Z, being

dZ

dR
=

1
R2

(
N3 −NT

1 Z− ZN1 − ZN2Z
)

. (4.59)

Let now us define M as the solution to the following problem
d

dR
M(R, Ro)−

N

R2 M(R, Ro) = 0

M(Ro, Ro) = I.
(4.60)

where the matricant M(R, Ro) is a 4× 4 matrix, called the conditional matrix.
Since M is the solution of the problem given in Eq. (4.60), from Eq. (4.55) it is

straightforward to show that

η(R) = M(R, Ro)η(Ro). (4.61)

Let us split the conditional matrix into four blocks as

M =

[
M1(R, Ro) M2(R, Ro)

M3(R, Ro) M4(R, Ro)

]
. (4.62)

We can use two possible ways to construct the surface impedance matrix,
either the conditional impedance matrix Zc(R, Ro) or the solid impedance matrix
Zs(R) [155].

In fact, considering that T(Ro) = 0 and by using the Eqs. (4.61)-(4.62), we can
define the conditional impedance matrix as Zc(R, Ro) := M3(R, Ro)M

−1
1 (R, Ro).

Such a matrix is called conditional since it depends explicitly on its value at
R = Ro.

Conversely, the solid impedance matrix does not depend explicitly on its
value at one point, but instead it ensures that the surface impedance matrix is
well posed at the origin.
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Following [155], we consider a Taylor series expansion of the solid impedance
matrix Zs(R) around R = 0, namely

Zs(R) = Z0 + Z1R + o(R), (4.63)

where Z0 is called central impedance matrix.
From the Eq. (4.59), the solid impedance matrix is well posed at the origin

only if the central impedance matrix satisfies the following algebraic Riccati
equation:

N3(0)−NT
1 (0)Z0 − Z0N1(0)− Z0N2(0)Z0 = 0;

whose general solution is given by

Z0 = δe1 ⊗ e1, δ ∈ R. (4.64)

By substituting Eq. (4.63) in Eq. (4.59) and setting R = Rc � 1, we obtain the
following algebraic Riccati equation

0 = N3(Rc)−NT
1 (Rc)Z0 − Z0N1(Rc)− Z0N2(Rc)Z0 − R2

cZ1N2(Rc)Z1+

−RcZ1

(
N1(Rc) + N2(Rc)Z0 +

Rc

2
I

)
− Rc

(
NT

1 (Rc) + Z0N2(Rc) +
Rc

2
I

)
Z1

(4.65)

whose stable solution is the only one such that the eigenvalues of

−Rc

(
N1(Rc) + N2(Rc)Z0 +

Rc

2
I

)
− R2

cN2(Rc)Z1

are all negative [58].
In summary, the surface impedance method allows us to avoid the direct

resolution of the boundary value problem given by Eqs. (4.47)-(4.49) by using a
numerical integration of the Riccati equation given by Eq. (4.59).

4.2.2.4 Numerical procedure and results of the linear stability analysis

The aim of this Section is to implement a robust numerical procedure to ana-
lyze the onset of a morphological transition as a function of the dimensionless
parameters α, β and γ representing the magnitude and the spatial distribution
of the residual stresses.

The solution of the incremental boundary value problem can be obtained
by a numerical integration of the differential Riccati equation (4.59) using two
different procedures.

First, the differential Riccati equation in Eq. (4.59) can be integrated from Rc

to Ro with starting value

Zs(Rc) = Z0 + RcZ1, (4.66)
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given by the solid impedance matrix in Eq. (4.63).
Using Eq. (4.66), we numerically solve Eq. (4.59) by iterating on the value α

in Eqs. (4.44)-(4.45), starting from 0 until the stop condition

det Zs(Ro) = 0, (4.67)

is reached, namely when the impedance matrix is singular and the incremental
Eqs. (4.47) and (4.49) admit a non-null solution that satisfies Eq. (4.48).

A second approach consists in integrating Eq. (4.59) by using the condi-
tional impedance matrix Zc(R, Ro). Since from Eq. (4.61) it can be shown that
M(Ro, Ro) = I, the definition of the conditional impedance matrix given by
Eq. (4.60) allows us to set the following initial condition:

Zc(Ro, Ro) = 0. (4.68)

Analogously, we iteratively integrate Eq. (4.59) until the stop condition

det(Zc(Rc, Ro)− Z0 − Z1Rc) = 0 (4.69)

is reached. This condition corresponds to the existence of non-null solutions
for the variable U by imposing the continuity of the incremental stress vector
T at R = Rc.

In both cases, in order to find the incremental displacement field, we perform
a further integration of Eq. (4.57) using the procedure described in [69].

The two numerical schemes were implemented by using the software Math-
ematica 11.0 (Wolfram Research, Champaign, IL, USA) in order to identify the
marginal stability curves as function of the dimensionless parameters α, β and
γ.

case (a): exponential polynomial case Let us first consider the case in
which the expression of f (R) is the exponential polynomial given by Eq. (4.44).
We use the initial condition given by Eq. (4.66).

We find out that the stop condition given by Eq. (4.67) is satisfied only for
negative values of α, namely we can find an instability only if the hoop resid-
ual stress is tensile close to the center and compressive near the boundary of
the sphere. Moreover, the results are independent on the choice of the δ in
Eq. (4.64).

For fixed β and m, let αm be the first value such that the stop condition
Eq. (4.67) is satisfied, we define the critical wavenumber mcr as the wavenumber
with minimum |αm| and we denote such a critical value with αcr. In Fig. 4.12

(left) we depict several marginal stability curves for various β whilst in Fig. 4.12

(right) we plot the critical wavenumber vs. β. We highlight that, as we increase
the parameter β, the critical wavenumber mcr also increases with a nearly linear
behavior.

In Fig. 4.13 we plot the solution of the linearized incremental problem for β =

3 where m = mcr = 7 (see Fig. 4.12 (right)) and we observe that wrinkles appear
in the outer shell of the sphere, where the hoop residual stress is compressive.
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Figure 4.12: Marginal stability curves for the residually stressed sphere where f (R) is
given by the Eq. (4.44), showing the critical α vs. the wavenumber m (left)
and the critical wavenumber mcr vs. β (right).
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Figure 4.13: Solution of the linearized incremental problem for β = 3 and m = mcr = 7
where f (R) is given by the Eq. (4.44). The amplitude of the incremental
deformation has been arbitrarily set 0.15 Ro for the sake of graphical clar-
ity.

case (b): logarithmic case Let us now consider the case in which f (R) is
given by Eq. (4.45). We find that the residually stressed sphere is unstable for
both positive and negative values of α.

When we consider positive values for the control parameter α, we integrate
the differential Riccati equation given by Eq. (4.59) from R = Ro, using the
initial condition given by Eq. (4.68), and using the stop condition at R = Rc

given by Eq. (4.69).
On the other hand, when α is negative, we use as the initial condition the

Eq. (4.66) and as stop condtion the Eq. (4.67). This means that we integrate the
Riccati equation from the interior to the exterior.

Let us first consider the case in which α is negative, namely when the hoop
stress is compressive at the boundary (see Fig. 4.11). In this framework in
Fig. 4.14 (left), we depict several marginal stability curves for various γ, whereas
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Figure 4.14: Marginal stability curves for the residually stressed sphere where f (R) is
given by the Eq. (4.45), showing the critical positive α vs. the wavenumber
m (left) and the critical wavenumber mcr vs. γ (right).
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Figure 4.15: Solution of the linearized incremental problem for γ = 2 and m = mcr =
10 where f (R) is given by the Eq. (4.45). The amplitude of the incremen-
tal deformation has been arbitrarily set 0.15 Ro for the sake of graphical
clarity.

in Fig. 4.14 (right) we plot the values of the critical wavenumber vs. the param-
eter γ. As previously observed, by increasing γ, also the critical wavenumber
mcr increases with a nearly linear dependence.

In Fig. 4.15 we plot the solution of the linearized incremental for γ = 2, where
m = mcr = 7 (see Fig. 4.14, right); as in the polynomial case, we can notice how
wrinkles appear in the outer rim of the domain, where the hoop residual stress
is compressive.

We perform the same calculations for the case in which α is positive. In
Fig. 4.16 we depict the resulting marginal stability curves for various γ and m.

In Fig. 4.17 we plot the solution of the linearized incremental problem for
γ = 2 and m = mcr = 3. We highlight that the displacement is localized in the
center of the sphere whereas the exterior part remains almost undeformed.
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Figure 4.16: Marginal stability curves for the residually stressed sphere where f (R) is
given by the Eq. (4.45), showing αm vs. the wavenumber m (left) and γ
(right). The black dashed curves on the right is the plot of the αcr vs. γ.
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Figure 4.17: Solution of the linearized incremental problem for γ = 2 and m = mcr = 3
where f (R) is given by the Eq. (4.45). The amplitude of the incremental
deformation has been arbitrarily set 0.15 Ro for the sake of graphical clar-
ity.

Also in this case, we found that all the results exposed are independent of
the chosen value of δ in Eq. (4.64).

In the next Section, we implement a finite element code in order to investigate
the fully non-linear evolution of the morphological instability.

4.2.3 Finite element implementation and post-buckling analysis

4.2.3.1 Mixed finite element implementation

We use a mixed variational formulation of the problem implemented with the
open source project FEniCS [134]. Let B be a semicircle and B̂ = (0, 1)× (0, π)

as depicted in Fig. 4.18. We define g : B → B̂ as the mapping that associates
each point in B with the point in R2 such that the two components are the
normalized radial distance R/Ro and the polar angle Θ. Hence, denoting by
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Figure 4.18: Representation of the conformal mapping between the physical domain
B and its conformal image B̂, defined through the coordinate transforma-
tion in Eq. (4.70).

X1 and X2 the first and the second coordinates respectively and by e1 and e2

the canonical unit basis vectors, we get that

X1 =
R
Ro

, X2 = Θ. (4.70)

We solve the nonlinear problem using a triangular mesh B̂h obtained through
the discretization of the set B̂. The mesh is composed of 14677 elements, 7519
vertices and the maximum diameter of the cells is 0.033.

We use the Taylor–Hood elements P2-P1, discretizing the displacement field
by using piecewise quadratic functions and the pressure field by piecewise
linear functions. The Taylor-Hood element is numerically stable for linear elas-
ticity problems [34] and has been used in several applications of non-linear
elasticity [16].

In order to study the behavior of the bifurcated solution in the post-buckling
regime, we impose a small imperfection on the mesh at the boundary [60]
with the form given by Eqs. (4.50)-(4.51), where m is the critical wavenumber
obtained from the linear stability analysis and the amplitude is of the order of
10−4.

We impose as boundary conditions
uh = 0 if X1 = 0,

uh · e2 = 0 and e1 · PT
h e2 = 0 if X2 = 0 or X2 = π,

PT
h e1 = 0 if X1 = 1;

(4.71)

where uh is the discretized displacement field and Ph the discretized first Piola–
Kirchhoff stress tensor.

The problem is solved by using an iterative Newton–Raphson method whilst
adaptively incrementing the control parameter α. The code automatically ad-
justs the increment of this parameter either near the marginal stability threshold
or when the Newton method does not converge.
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Figure 4.19: Plots of the ratio Enum/Etheor (left) and the normalized buckling am-
plitude ∆r/Ro (right) versus the control parameter α. The numerical
results are in good agreement with the theoretical instability threshold
αcr = −4.9084 (red square marker).

Each step of the Newton–Raphson method is performed using PETSc as a
linear algebra back-end and then the linear system is solved through an LU
decomposition.

4.2.3.2 Results of the finite element simulations

case (a): exponential polynomial case We first show the results for the
case in which f (R) is given by Eq. (4.44). We denote by Enum the total strain en-
ergy of the deformed material, and by Etheor the theoretically computed strain
energy of the undeformed sphere, namely in the reference configuration. We
remark that the strain energy density in the undeformed reference configura-
tion may not be zero. Indeed, setting F = I in (4.42), it is easy to check that
the energy density vanishes only if Σ = 0. Thus, the presence of pre–stresses
is physically related to the fact that some mechanical energy is already stored
inside the material.

In Fig. 4.19 (left) we plot the ratio between Enum and Etheor vs. α when β = 1.1;
the mode of the imperfection applied on the mesh is the critical one mcr = 2,
we also computed the amplitude of the pattern, defined as

∆r := max
Θ∈[0,π]

rh(Ro, Θ)− min
Θ∈[0,π]

rh(Ro, Θ),

where rh is the discretized deformation field in the radial direction (Fig. 4.19

(right)). We observe that there is a smooth increase of such an amplitude when
the control parameter is lower than αcr. When performing a cyclic variation of
the control parameter, decreasing α first and then increasing it to zero, both the
amplitude of the wrinkling and the energy ratio do not encounter any disconti-
nuity and they both follow the same curve in both directions.
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Figure 4.20: Comparison between the ratios Enum/Etheor vs. the wavenumber m. The
squares denote the thresholds αm computed in the previous Section.
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Figure 4.21: Plot of the deformed configuration when f (R) is given by Eq. (4.44), β =
1.1, α = −5.62 and m = mcr = 2 (top); α = −5.55 and m = 4 (bottom). The
color bars indicate the norm of the displacement ‖uh‖ (left) and the trace
of the Cauchy stress tensor normalized with respect to the shear modulus
µ (right). On the right we depict a 3D representation of the deformed
sphere.

Since αcr is very close to the other values αm, in Fig. 4.20 we compare the
energy ratio also for the cases in which the wavenumber of the imperfection is
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Figure 4.22: Ratio between Enum/Etheor versus the control parameter α(Left) when
f (R) is given by Eq. (4.45) for γ = 1.1 and m = mcr = 2. We performed
a cyclic variation of the control parameter α (right), first increasing it be-
yond the linear stability threshold (green solid line) and then decreasing
it down to the initial value (orange dashed line). In both plots, the red
squares denote the threshold α2 = 48.60 computed in the previous Sec-
tion.

not the critical one, specifically m = 3 and m = 4. We can observe that there is
a continuous decrease of such a ratio when the threshold αm is reached. From
the picture we can also notice that there is no intersection of the curves that
represent the ratio of the energies, thus suggesting the absence of secondary
bifurcations.

Setting β = 1.1, in Fig. 4.21 we depict the deformed configuration of the
sphere when α = −5.62, when m = mcr = 2 (top) and α = −5.55 when m = 4
(bottom), with the color bar we indicate the norm of the displacement ‖uh‖
(left) and the trace of the Cauchy stress tensor Th normalized with respect to
the shear modulus µ (right).

case (b): logarithmic case We performed the same numerical procedure
for simulating the logarithmic case.

We considered the case in which α is positive. From the linear stability anal-
ysis we expect that the instability is localized in the interior part of the sphere
(Fig. 4.17).

Let γ = 1.1, in Fig. 4.22 we plot the ratio Enum/Etheor at varying α. We
performed a cyclic variation of the control parameter α, first increasing it and
then decreasing it down to zero Fig. 4.22 (right). We highlight the presence of
both a jump across the linear threshold and hysteresis, thus highlighting the
presence of a subcritical bifurcation. The linear stability threshold is in good
agreement with the theoretical prediction, given that subcritical bifurcations
have a higher sensitivity to imperfection than supercritical ones.
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Figure 4.23: Plot of the deformed configuration when f (R) is given by Eq. (4.45), γ =
1.1, α = 58.8 and m = mcr = 2. The color bars indicate the norm of the
displacement ‖uh‖ (left) and the trace of the Cauchy stress tensor (right).
On the right we depict a 3D representation of the deformed sphere.

In Fig. 4.23 we show the deformed configuration of the sphere when α = 58.8
for γ = 1.1, where the color bars indicate the norm of the displacement ‖uh‖
and the trace the Cauchy stress tensor Th normalized with respect to the shear
modulus µ.

We remark that we obtain small numerical oscillations of the displacement
field near the center of the sphere in the fully nonlinear post-buckling regime.
These errors eventually get amplified during the computation of the stress field,
and the numerical solution no longer converges. In some cases, we observed
that the Newton method failed to converge for some different values of the
parameter γ when α is just beyond the marginal stability threshold αcr. The
improvement of the numerical continuation method is outside the scope of
this work, but we acknowledge that a different approach, e.g. using scalable
iterative solvers and preconditioners [83], could improve the stability of the
numerical solution in the post-buckling regime.

4.2.4 Discussion and concluding remarks

This Section investigated the morphological stability of a soft elastic sphere
subjected to residual stresses.

In the first part, we modeled the sphere as a hyperelastic material by intro-
ducing a strain energy depending explicitly on the deformation gradient and
on the initial stress [97, 98]. In this way, we can avoid the classical deformation
gradient decomposition [181] which has the drawback of requiring the a priori
knowledge of a virtual relaxed state.

Secondly, we described the residual stress fields by using a function f (R) that
denotes the radial component of the residual stress. This function depends on
the dimensionless parameters α, β and γ, where α is the normalized intensity
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of the residual stress whereas β and γ describe the spatial distribution of the
residual stress components within the sphere.

We investigate two possible distributions of the radial residual stress f (R),
one based on a polynomial function, the other on a logarithmic one. We denote
these two choices as case (a) and (b) respectively.

We performed the linear stability analysis in both cases by using the theory
of incremental deformations superposed on the undeformed, pre-stressed con-
figuration. In order to solve the incremental boundary value problem, we used
the Stroh formulation and the surface impedance matrix method to transform
it into the differential Riccati equation given by Eq. (4.59) [154] .

We integrated numerically the resulting incremental initial value problem by
iterating the control parameter until a stop condition is reached, in order to find
the marginal stability thresholds. We found out that the morphological transi-
tion occurs in the region where the hoop residual stress reaches its maximum
magnitude in compression.

In the case (a) we find an instability only for α < 0, whilst in case (b) we
find an instability for both α positive and negative. In this latter case, when α

is positive the instability occurs in the inner region of the sphere whereas if α

is negative it is localized in the external region. The results of such analysis are
reported in Figures 4.12-4.17.

Finally, we implemented a numerical procedure by using the mixed finite
element method in order to approximate the fully non-linear problem. After
the validation of the numerical simulations obtained by the comparison with
the results of the linear stability analysis, we analyzed the resulting morphology
in the fully non-linear regime.

In the case (a), the instability is localized in the external part of the sphere
where the hoop residual stress is compressive. The continuous transition from
the initial configuration to the buckled state indicates that the bifurcation is
supercritical.

In the case (b), the instability is localized near the center of the sphere when
the parameter α > 0. In contrast to the previous case, the bifurcation is found
to be subcritical, thus suffering a jump across the linear stability threshold. The
results of these simulations are reported in Figures 4.19-4.23.

Future efforts will be directed to improve the proposed analysis either by
implementing of a fully 3D numerical model in order to study the secondary
bifurcation that might appear in the azimuthal direction or by accounting for
the presence of material anisotropy, a major determinant for the residual stress
distribution in living matter, e.g. tumor spheroids [72].

In summary, this Section proposes a novel approach that may provide useful
guidelines for engineering applications. For example, it may be of interest for
achieving a nondestructive determination of the pre–stresses in soft spheres.
Whilst the currently used method consists in cutting the material and infer-
ring the residual stresses through the resulting deformation [198], the proposed
model explicitly correlates both the mechanical response of the material and its
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morphology with the underlying distribution of pre-stresses. Moreover, the
proposed static analysis based on the Stroh formulation can be easily adapted
to solve the corresponding elasto–dynamic problem in a solid sphere [154, 59].
Thus, we will derive the dispersion curves governing the propagation of time-
harmonic spherical waves of small amplitude as a function of the residual stress
components. This theoretical prediction will be used to feed a nonlinear inverse
analysis for determining the pre–stress distribution using elastic waves, e.g. by
ultrasound elastography [137, 132].

Furthermore, our results may provide useful insights for designing mechan-
ical meta-materials with adaptive morphology. Indeed, it would be possible
to fabricate soft spheres in which the magnitude of the pre-stresses can be
controlled by external stimuli, such as voltage in dielectic elastomers [38] or
solvent concentration in soft gels [205]. Digital fabrication techniques offer a
low cost alternative for printing materials with a targeted distribution of resid-
ual stresses [219]. Thus, morphable spheres can be obtained by modulating the
residual stresses around the critical value of marginal stability. Dealing with
pre–stressed neo-Hookean materials, the results of this Section are particularly
relevant for controlling the transient wrinkles that form and then vanish during
the drying and swelling of hydrogels [135, 27]. Other applications range from
adaptive drag reduction [204] to the pattern fabrication on spherical surfaces
[196, 39].

4.3 rayleigh–taylor instability in soft elastic lay-
ers

The study of pattern formation in soft solids has highlighted some similar-
ities, yet several relevant differences, with the instability characteristics of hy-
drodynamic systems, although their boundary value problems are intrinsically
different. For example, if the surface tension in a thin fluid filament triggers the
formation of droplets, which spontaneously break down [171], such a dynam-
ics can be stabilised by elastic effects in soft solid cylinders [145], thus driving
the emergence of stable beads-on-a-string patterns [201]. Similarly, whilst fin-
gering at the interface of two immiscible viscous fluids is an unstable process
[185], stable digitations may occur after a subcritical bifurcation for a fluid push-
ing against an elastic surface [187] and at the interface between a thin elastic
layer adhering to a glass plate [92]. A compressible hyperelastic tube subjected
to a circular shear can exhibit bifurcations reminescent to the classical Taylor-
Couette patterns appearing in the motion of viscous fluids [88].

Another interesting example is the gravity-induced instability in an elastic
layer attached to a rigid substrate with a traction-free surface facing down-
wards. Contrarily to gravity waves in a fluid layer, the free surface experiences
fluctuations that eventually saturate when the large deformations store an elas-
tic free energy of the same order as the corresponding variation of the potential
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energy. Piriz et al. studied the problem for a linear elastic material [166]. The
linear stability analysis of this problem for a nonlinear elastic solid has been re-
cently performed [146], then refined to consider the effect of an applied strain
on the elastic layer [133]. Nonetheless, this problem had been previously solved
using numerical techniques [18], often being used as a test case to study the
stability of discrete solutions, obtained by means of mixed finite element tech-
niques [16, 17]. More recently, also the weakly non-linear and the 3D numerical
post-buckling analysis have been performed [49].

Since Rayleigh [172] and Taylor [203], it is well known that the horizontal
interface between one fluid layer put on top of a lighter one is unstable to
perturbation of long wavelength, i.e. bigger than the capillary length, forming
protrusions growing with a characteristic time. However, if one takes surface
tension into account, the growth of small wavelength protrusions is inhibited
by capillary effects, thus larger wavelength drops grow and eventually drip
[84]. In Chapter 4.3, we aim at studying this kind of gravity instability in a soft
system made of two heavy elastic layers attached on one end to a rigid surface.
In particular, we are interested in characterizing both pattern formation and its
nonlinear evolution, determining the interplay between elastic and geometric
effects for the emergence of a given pattern.

4.3.1 The non-linear elastic problem and its basic solution

In a Cartesian coordinate system with unit base vectors Ei, with i = (X, Y, Z),
we consider a soft body made of two hyperelastic layers, as sketched in Fig-
ure 4.24.

Let E3 be the three-dimensional Euclidean space, the body occupies a domain
Ω ⊂ E3, having a thickness H along the Y axis and a length L along the X axis,
with L � H. We also consider that the body is infinitely long along the Z
direction, so that a plane strain assumption can be made, hence

Ω = (0, L)× (0, H)×R.

The body is clamped to a rigid substrate at Y = 0, so that its volume Ω can
be split in the two subdomains Ωa and Ωb occupied by the constituting layers,
such that:

Ωa = {X ∈ Ω | 0 < Y < Ha} ,

Ωb = {X ∈ Ω | Ha < Y < H} ,

where X is the material position vector, Ha and Hb are the thicknesses of the
layers.

Indicating x = x(X, Y) the spatial position vector, the kinematics is described
by the geometrical deformation tensor F = Grad x. We also assume that the
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layers behave as incompressible neo-Hookean materials and the strain energy
density of each layer is given by

Wβ(F) =
µβ

2
(I1 − 2)− p(det F− 1), β = (a, b); (4.72)

where I1 is the trace of the right Cauchy–Green tensor C = FTF and p is the
Lagrangian multiplier enforcing the internal constraint of incompressibility.

Using the constitutive assumption in Eq. (4.72), the first Piola-Kirchhoff stress
tensor P reads:

Pβ =
∂Wβ

∂F
= µβFT − pF−1, β = (a, b).

Assuming quasi-static conditions, the balance of linear momentum for the
elastic body subjected to its own weight reads:

Div Pβ + ρβg = 0 in Ωβ, where β = (a, b); (4.73)

where Div is the material divergence, ρa and ρb are the densities of the layers,
g = gEY, is the gravity acceleration vector.

In the following we aim to provide a unified analysis of the two configu-
rations depicted in Figure 4.24. For the sake of notational compactness, we
consider that a positive g represents the body hanging down a rigid wall (Fig-
ure 4.24a), and a negative g the body placed on top of a rigid substrate (Fig-
ure 4.24b).

The two boundary conditions at the fixed substrate and at the free surface
read 

PT
b EY = 0 for Y = H,

EY · PT
β EX = 0 for X = (0, L), β = (a, b)

u = 0 for Y = 0,

u · EX = 0 for X = (0, L);

(4.74)
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Figure 4.24: Sketch of the material setting in two different configurations. Case (a):
the body hangs below on a fixed rigid wall, thus being subjected to a
tensile gravity force along Y (left). Case (b): the body is placed on top of a
rigid substrate, thus being subjected to a compressive gravity force along
Y (right).
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where u = (x− X) is the displacement vector field. The elastic boundary value
problem is finally complemented by the following displacement and stress con-
tinuity conditions at the interface between the two layers, respectively

lim
Y→H−a

u = lim
Y→H+

a

u,

lim
Y→H−a

PT
a EY = lim

Y→H+
a

PT
b EY.

(4.75)

The boundary value problem Eqs. (4.73)–(4.75) admits a basic solution given
by

u = 0, p =

{
µa + ρag(Y− Ha)− ρbgHb for 0 < Y < Ha,

µb + ρbg(Y− H) for Ha < Y < H;
(4.76)

so that no basic deformation is allowed by the incompressibility constraint, and
the body is subjected to a hydrostatic pressure linearly dependent on Y. We
also highlight that the pressure field in Eq. (4.76) is discontinuous if µa 6= µb or
ρa 6= ρb.

4.3.2 Linear stability analysis of the basic solution

4.3.2.1 Incremental equations

We now aim at investigating the stability of the basic elastic solution Eq. (4.76)
using the method of incremental deformations superposed on a finite strain
[156].

Let us perturb the basic configuration by applying an incremental displace-
ment δu, if we set δF = Grad δu, the linearised incremental Piola-Kirchhoff
stress tensor is

δPβ = Aβ
0 : δF + p δF− δp I for β = (a, b);

where

Aβ
0 =

∂2Wβ

∂F∂F
; with Aβ

0ijhk =
∂2Wβ

∂Fji∂Fkh

is the tensor of instantaneous elastic moduli, I is the identity tensor, δp is the
increment of the Lagrangian multiplier p and the two dots operator (:) denotes
the double contraction of the indices, namely

(Aβ
0 : δF)ij = Aβ

0ijhkδFkh.

Recalling that the basic solution is undeformed, the incremental incompress-
ibility and equilibrium equations read, respectively

Div δPβ = 0 in Ωβ, with β = (a, b),

Div δu = 0 in Ω.

(4.77)

(4.78)
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The incremental counterparts of two boundary conditions at the fixed sub-
strate and at the free surface may be rewritten as, respectively

δPT
b EY = 0 for Y = H,

EY · δPT
β EX = 0 for X = (0, L), β = (a, b),

δu = 0 for Y = 0,

δu · EX = 0 for X = (0, L).

(4.79)

(4.80)

(4.81)

(4.82)

Similarly, the incremental versions of the displacement and stress continuity
conditions at the interface read:

lim
Y→H−a

δu = lim
Y→H+

a

δu,

lim
Y→H−a

δPT
a EY = lim

Y→H+
a

δPT
b EY.

(4.83)

(4.84)

In the following, we derive the solution of the incremental boundary value
problem given by Eqs. (4.77)-(4.84).

4.3.2.2 Solution of the incremental boundary value problem

Let us now assume an ansatz by variable separation in the expression of the
incremental displacement, namely

δu = U(Y) sin(kX)EX + V(Y) cos(kX)EY, (4.85)

where k is the horizontal spatial wavenumber. We recall that such a functional
dependence along the X direction suitably describes both the infinite geometry,
for which k is a continuous variable, and a finite length L, so that k = 2πn/L
with integer mode n.

From Eq. (4.78) we get that

kU(Y) = −V ′(Y). (4.86)

From the first component of Eq. (4.77) we obtain the expression for δp as

δp = cos(kX)
(
ρβgV(Y)− µβV ′(Y) + k−2µβV ′′′(Y)

)
in Ωβ with β = (a, b).

(4.87)
By substituting Eqs. (4.86) and (4.87) in the second component of Eq. (4.77),

we obtain the following ordinary differential equation:

V ′′′′(Y)− 2k2V ′′(Y) + k4V(Y) = 0, (4.88)

which is valid for both layers and whose solution is given by:

V(Y) = C1βe−kY + C2βYe−kY + C3βekY + C4βYekY in Ωβ, β = (a, b). (4.89)
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Hence, setting

v =

[
C1a

Ha
, C2a,

C3a

Ha
, C4a,

C1b

Ha
, C2b, e2kHa

C3b

Ha
, e2kHa C4b

]T

we impose the conditions given in Eqs. (4.79)–(4.84), we find 8 linear algebraic
equations in the unknowns vj, j = (1, . . . , 8), so that we can write such system
in the compact form Mv = 0 where M is the 8× 8 coefficients’ matrix. Hence,
we find that a non-null solution of such linear system exists if and only if

det M = 0; (4.90)

The full form of M is reported in the Appendix 4.3.5.

4.3.2.3 Results of the linear stability analysis

Let us now discuss the results of the linear stability analysis by making use
of the following dimensionless parameters:

γ =
ρagHa

µa
, αH =

Hb

Ha
, αµ =

µb

µa
, αρ =

ρb

ρa
, k̃ = Hak.

A great simplification arises if we set both αρ = 1 and αµ = 1 or if we impose
αH = 0 in Eq. (4.90), so that the body is made of a single homogeneous slab. In
particular, we recover the same expression reported in [146]:

ρgH
µa

=
2kH

(
2 (kH)2 + cosh(2kH) + 1

)
sinh(2kH)− 2kH

;

highlighting that an elastic bifurcation occurs for the critical value ρgH
µa
' 6.22

with critical wavenumber kH ' 2.11.
Let us now analyse the resulting solutions when αρ = 1, namely assuming

that the body force is the same for both layers. In the case in which αµ 6= 1 or
αH 6= 1, we find only one root of equation Eq. (4.90). In Figure 4.25 we depict
the resulting marginal stability curves varying the parameters αµ and αH.

We denote by γcr the critical value of γ, i.e. the minimum value of the
marginal stability curve obtained fixing αH and αµ. We denote by k̃cr the criti-
cal wavenumber, namely the value of k̃ for which the marginal stability curve
has a minimum. All the critical values of the marginal stability curves have
been found by using the Newton’s method with the software Mathematica 11.0
(Wolfram Research,Champaign,IL, USA).

In Figure 4.26 we plot the critical values γcr and k̃cr when varying αH and αµ.
We find that γcr strongly depends on αµ and αH. In Figure 4.26a we find that if
we increase the parameter αµ the critical value γcr also increases, so that high
values of αµ have a stabilizing effect. On the contrary, in Figure 4.26c we find
that if we increase αH the critical value γcr decreases. We highlight that, if αH
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tends to zero we obtain that γcr ' 6.22, which is the single layer limit discussed
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Figure 4.25: Marginal stability curves showing the order parameter γ versus the hor-
izontal wavenumber k̃ for ρa = ρb and: (a) αµ = 0.5, (b) αH = 1. The
curves are shown at varying αH (a) and αµ (b) from 0.6 to 2 by steps of
0.2, the arrow indicates the direction in which the parameter grows.
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Figure 4.26: Plot of the critical values of (a) γcr versus αµ at varying αH ; (b) γcr versus
αH at varying αµ; (c) k̃cr versus αµ at varying αH ; (d) k̃cr versus αH at
varying αµ. The arrows indicate the direction in which the parameters αH
(a,b) and αµ (c,d) grow from 0.6 to 2 by steps of 0.2.
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before. The same limit is found for αµ tending to zero, since it represents the
case in which the bottom layer in Figure 4.24a becomes infinitely soft. The
critical wavelength is always of the same order of the body thickness, resulting
to be more influenced by the parameter αH if αµ > 1, as we can notice from
Figures 4.26b and 4.26d.

The case in which αρ = 1 is of particular interest in the applications because
it is reproducible in experiments using hydrogels. In fact, these soft materials
are mainly composed of water, thus having a density which is of the order
of 103 kg/m3. Nonetheless, by small variation of the crosslink concentration,
it is possible to obtain a shear modulus µ ranging from 100 Pa to 10 kPa. For
example, if we consider two hydrogel layers with Ha = Hb (Figure 4.25b), where
the clamped one has µa = 300 Pa and the other µb = 600 Pa, we find that
γcr ' 4.4366. Accordingly, an instability would appear at Ha ≥ µaγcr/(ρg) '
13.57 cm.

The general case in which αρ 6= 1 is a bit more complex, in fact Eq. (4.90) can
be written in the following compact form

c1γ2 + c2γ + c3 = 0 (4.91)

where the coefficients c1, c2 and c3 depend on αH, αµ, αρ and k̃, as reported in
the Appendix 4.3.6.

Even if their expressions are very cumbersome, we can still make some gen-
eral observations. In fact we observe that c1 does not depend on αρ whereas,
if we fix the other variables, c3 has a different sign if αρ > 1 or if 0 < αρ < 1.
Hence, one of the two real roots of Eq. (4.91) changes sign if we consider αρ > 1
or 0 < αρ < 1.

Thus, we make a distinction in the following between these two cases, which
physically correspond to the two configurations depicted in Figure 4.24.

case (a): free surface instability (γ > 0) The configuration shown
in Figure 4.24a undergoes a morphological transition if Eq. (4.91) possesses at
least a positive root for γ, since we assume g > 0.

In Figures 4.27 and 4.28 we depict the marginal stability curves γ(k̃) when
we vary the parameters αH, αρ and αµ in Eq. (4.91). In this case, we find that
the instability is localised at the free boundary of the slab, i.e. at Y = H.

We can observe that we have the same behaviour discussed for the case αρ =

1: if we increase the parameter αµ we obtain a stabilization of the system (i.e.
γcr increases) whereas if we decrease αH we have instability for lower values of
γ.

case (b): interfacial instability (γ < 0) Conversely, the configuration
shown in Figure 4.24b undergoes a morphological transition if Eq. (4.91) pos-
sesses a negative root for γ, since we assume g < 0. As previously discussed,
this happens only if αρ > 1, meaning that the top layer is heavier than the bot-
tom one. Thus, this case is the elastic analog of the Rayleigh-Taylor instability.
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As found in fluids, the instability is concentrated at the interface between the
layers and decays away from it.

In this configuration, we define the critical value γcr as the maximum of the
marginal stability curve γ(k̃) for fixed αH, αµ, and αρ.

In Figure 4.29 we set αρ = 2 and we plot the marginal stability curves for
several values of the parameters αH and αµ. Also in this case we highlight that
increasing the parameter αµ stabilizes the system, whereas an increase of the
parameter αH favours the onset of the interfacial instability.

In the next Section, based on the results of the linear stability analysis, we
build the simulation tools for studying the fully nonlinear morphological tran-
sition.

4.3.3 Post-buckling analysis

In this Section we numerically implement the fully non-linear problem given
by Eqs. (4.73)-(4.75). We finally report the results of numerical simulations for
the two cases under considerations, highlighting the morphological evolution
of the emerging patterns in the fully nonlinear regime.

4.3.3.1 Finite element implementation

The boundary value problem is implemented by using the open source tool
for solving partial differential equations FEniCS [134]. In order to enforce the
incompressibility constraint, a mixed formulation has been chosen. If the two
layers have different stiffness or mass density, the pressure field may present
a discontinuity at the interface between the two layers, according to the basic
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Figure 4.27: Marginal stability curves showing the order parameter γ versus the hori-
zontal wavenumber k̃ for αH = 1 and: (a) αρ = 0.5, (b) αρ = 2 where αµ

varies from 0.4 to 2 by steps of 0.2. In (a) we find two positive solutions
(solid and dashed lines) of equation Eq. (4.91) whereas in Figure (b) we
only find one positive solution.
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Figure 4.28: Marginal stability curves showing the order parameter γ versus the hor-
izontal wavenumber k̃ for αµ = 1 and: (a) αρ = 0.5, (b) αρ = 2 with αH
varying from 0.6 to 2 by steps of 0.2. In (a) we find two positive solutions
(solid and dashed lines) of equation Eq. (4.91) whereas in Figure (b) we
only find one positive solution.

solution Eq. (4.76). Accordingly, we used the element P2–P0 [34] in numerical
simulations.

This element discretizes the displacement with piecewise quadratic functions
and the pressure field with piecewise constant functions, so that we can cor-
rectly account for a discontinuous pressure field. It is also numerically stable
in linear elasticity [34] and it has been successfully used in several non-linear
applications [16, 18].

We use a rectangular mesh whose height is H = 1 and whose length is the
critical wavelength λ = 2πHa/k̃cr, where k̃cr is the critical value arising from
the previous linear stability analysis and depending on αρ, αH and αµ. We set
u = 0 at Y = 0 and we impose periodic boundary conditions at X = 0 and
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Figure 4.29: Marginal stability curves showing the negative root of the order parame-
ter γ versus the horizontal wavenumber k̃ for αρ = 2 and: (a) αH = 1 with
αµ varying from 0.4 to 2 by steps of 0.2; (b) αµ = 1 with αH varying from
0.6 to 2 by steps of 0.2.
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X = λ. The number of elements used depends on the length of the mesh, the
maximum number of elements used is 30000.

In order to investigate the post-buckling regime, we impose a sinusoidal im-
perfection at the top boundary of the mesh with a wavenumber kcr and an
amplitude h = 10−4H as done in [57, 60].

The solution is found by using an incremental iterative Newton–Raphson
method increasing (or decreasing in the fluid analogue case) the control param-
eter γ. In each iteration, the calculation is performed by using the linear algebra
back-end PETSc (Portable, Extensible Toolkit for Scientific Computation) and
the linear system is solved through a LU (Lower-Upper) decomposition. The
code automatically adjust the increment of the control parameter if γ is near
the critical value γcr or when the Newton–Raphson method fails to converge.

Since secondary bifurcations may appear in such a dispersive problem, due
to subharmonic resonance phenomena in the fully nonlinear regime, we per-
formed further simulations using the approach proposed in [40]. Accordingly,
we looked for period-doubling and period-tripling secondary bifurcations by
using as computational domain the sets [0, 2mπ/kcr] × [0, 1] with m = 2 and
m = 3, respectively. However, we did not find any further bifurcation in the
parameters’ range considered in the manuscript, in agreement with the experi-
mental observations performed in the single layer case [146].

4.3.3.2 Numerical results

In the following, we report the results of the numerical simulation for the
two cases under considerations.

case (a): free surface instability (γ > 0) We first implement the case
described in Figure 4.24a, setting αρ = 1 in order to mimic the behaviour of a
slab made of two hydrogel layers. In Figure 4.30, we depict the results of the
numerical simulations for two different values of αµ. In particular, we high-
light that the deformation is localised at the free boundary of the body, and
it evolves towards the formation of stable hanging digitations. Let ∆h be the
maximum vertical distance of the points on the free surface whilst ∆l be the
horizontal distance between the points which have initial coordinates (λ/4, H)

and (3/4 λ, H), so that ∆l/λ = 0.5 if γ < γcr. Thus, we employ ∆h and ∆l to
study the nonlinear evolution of the fingers’ morphology.

As shown in Figure 4.31a, we find that the fingering height ∆h continuously
increases as the control parameter γ goes beyond its critical value. When per-
forming a cyclic variation of the order parameter, where we first incremented γ

until a value γmax > γcr and later decreased it back to the initial value, we found
that both ∆h and ∆l did not encounter any discontinuity, always following the
same curve in both directions. Moreover, in the weakly nonlinear regime ∆h
increases as the square root of the distance to threshold of the order parameter,
thus highlighting the presence of a supercritical pitchfork bifurcation.
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(a) αµ = 0.5 (b) αµ = 2

(c) αµ = 0.5 (d) αµ = 2

Figure 4.30: Resulting fingering morphology and displacement fields setting αH = 1,
αρ = 1 and (a, c) αµ = 0.5 and γ = 3.14; (b, d) αµ = 2 and γ = 5.5. In (c,
d) the colorbars indicate the norm of the displacement.

● ● ● ● ● ● ● ● ● ● ● ● ● ●●●●●●●●●●●●●●
●
●
●●
●●
●●●
●●●
●
●
●
●
●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●

▲▲

γcr

1 2 3 4
γ

0.5

1.0

1.5

2.0

2.5

Δ h

(a) Plot of ∆h vs. γ

● ●●●●●●●
●●●●

●
●

●
●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

■ ■■■■■■■■■■■■■■■■■■■■■■■■■■
■
■
■
■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■

◆ ◆◆◆◆◆◆◆◆◆◆◆◆◆◆
◆
◆◆◆

◆
◆
◆
◆
◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆

0.2 0.2 0.4 0.6 0.8 1.0
γ γcr

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

Δ l
λ

(b) Plot of ∆l/λ vs. γ− γcr

Figure 4.31: (a) Numerical results showing the height of the fingers ∆h versus the
order parameter γ, setting αρ = 1, αH = 1, αµ = 0.75. The simulations
validate the marginal stability threshold γcr ' 2.66 predicted by the linear
stability analysis. (b) Plot of the normalized fingers’ thickness ∆l/λ for
αµ = 0.5 (green), 0.75 (orange) and 2 (blue).

The shape and the thickness of these fingers strongly depend on the stiffness
and the thickness of the two layers. As shown in Figure 4.31b, the fingers
become thicker as we increase αµ.
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We remark that the maximum diameter h of the mesh elements is chosen as
the maximum value such that the resulting ∆h and ∆l/λ differ by less than
10−3 from the corresponding values obtained using a refined mesh with h/2.

case (b): interfacial instability (γ < 0) We now focus on the elastic
analogue of the Rayleigh Taylor instability, occurring in the configuration de-
picted in Figure 4.24b. Here we set αρ = 2, so the top layer is heavier than the
bottom one.

The simulation results are depicted in Figure 4.32 for two different values of
αH. In particular, we find a behavior similar to the Rayleigh–Taylor instability
in fluids: the displacement is concentrated at the interface of the two layers
forming a marginally stable undulation.

Let ∆h denote here the maximum vertical distance of the points on the in-
terface between the two layers whilst let ∆l be the horizontal distance between
the points which have initial coordinates (λ/4, Ha) and (3/4 λ, Ha), so that
∆l/λ = 0.5 if γ > γcr. In Figure 4.33, we show the nonlinear evolution of such
morphological parameters as a function of γ. As in the previous case, we mea-
sured the quantity ∆h decreasing the parameter γ finding a continuous increase
of the height of the undulation, as reported in Figure 4.33a. We highlight that
the normalized thickness ∆l/λ strongly depends on the parameter αH, as we
can see from Figure 4.33b.

In fact, for thin soft layers the undulation decreases its width whilst decreas-
ing γ beyond its critical value, thus forming a digitation. Conversely, the un-

(a) αH = 1 (b) αH = 0.25

(c) αH = 1 (d) αH = 0.25

Figure 4.32: Resulting morphology and displacement fields setting αµ = 1, αρ = 2 and
(a, c) αH = 1 and γ = −12.36, (b, d) αH = 0.25 and γ = −21.12. In (c, d)
the colorbars indicate the norm of the displacement.
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Figure 4.33: (a) Numerical results showing the height ∆h of the undulation versus the
order parameter γ, setting αρ = 2, αH = 1, αµ = 1. The simulations
validate the marginal stability threshold γcr ' −10.97 predicted by the
linear stability analysis. (b) Plot of the normalized undulation thickness
∆l/λ for αH = 0.25 (green), 1 (orange) and 4 (blue).

dulation width increases for thick top layers, thus forming a stable wrinkle. In
summary, ∆l/λ increases if the top layer is sufficiently thin, whilst it decreases
if the top layer is above a critical thickness. In both cases, the resulting mor-
phology is perfectly reversible after cyclic variations of the order parameters,
highlighting the presence of a supercritical pitchfork bifurcation.

4.3.4 Discussion and concluding remarks

In this Section, we used theoretical and computational tools to investigate the
stability of a soft elastic bilayer subjected only to the bulk gravity force.

Assuming that both layers are made of incompressible neo-Hookean materi-
als, we have first formulated the boundary value problem in nonlinear elastic-
ity considering that the slab attached on one end to a rigid substrate and it is
traction-free at the other end. Considering the two configurations depicted in
Figure 4.24, we have identified their basic undeformed solutions in Eq. (4.76),
characterized by an hydrostatic pressure linearly varying on the thickness di-
rection.

Secondly, we have studied the linear stability by the means of the method of
incremental deformations superposed on the basic elastic solution. We found
that both configurations can undergo a morphological transition governed by
the order parameter γ, representing the ratio between potential and elastic en-
ergies of the top layer. In particular, its critical value depends on three dimen-
sionless parameters: αH, αµ, αρ representing the thickness, shear moduli and
density ratios between the layers, respectively.

Thirdly, we have implemented a finite element code to solve the boundary
value problem in the fully nonlinear instability regime. Other than validating
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the predictions of the linear stability analysis, the simulations have highlighted
the nonlinear evolution of the characteristic patterns.

Compared to the classic Rayleigh-Taylor hydrodynamic instability, not sur-
prisingly we have found that elastic effects tend to stabilize the dynamics of the
surface undulations forming beyond the linear stability threshold. Nonetheless,
we obtained a rich morphological diagram with respect to both geometric and
elastic parameters. In the following, we briefly discuss the main results for the
two cases under consideration.

If the body hangs below a rigid wall, as depicted in Figure 4.24a, we find
that there always exists a critical value for the order parameter, driving a mor-
phological transition localised at the free surface. Such an shape instability is
favoured if the bottom layer is softer and thicker than the top one, having a
critical horizontal wavelength of the same order as the body thickness. In the
nonlinear regime, this critical undulation evolves towards forming a digitation,
whose characteristic penetration length continuously increases beyond the lin-
ear stability threshold, highlighting the existence of a supercritical pitchfork
bifurcation.

If the body is attached to a rigid substrate at the bottom surface, as depicted
in Figure 4.24b, a morphological transition can occur if and only if the top layer
has a higher density than the bottom one. Similarly to the previous case, the
onset of an elastic bifurcation is favoured by a softer and thicker bottom layer
compared to the top one, with a critical wavelength of the same order as the
body thickness. However, an important difference is that the shape instability
is localised at the interface between the two layers, displaying two characteristic
nonlinear patterns. If the top layer is thinner than the bottom one, the undu-
lation evolves towards forming finger-like protrusions, whilst in the opposite
geometrical limit a stable wrinkling occurs.

In summary, we have characterized the shape instabilities occurring in a soft
elastic bilayer subjected only to the action of the gravity bulk force. Unlike the
Rayleigh-Taylor instabilities in fluids, we have demonstrated that the nonlinear
elastic effects saturate the dynamic instability of the bifurcated solutions, dis-
playing a rich morphological diagram where both digitations and stable wrin-
kling can emerge. The results of this Section provide important guidelines for
the design of novel soft systems with tunable shapes. In fact, the possibility
to control by external stimuli both the geometric and the elastic properties in
smart materials, such as hydrogels or dielectric elastomers [164], can be used to
provoke morphological transitions on demand [199]. Morphological changes in
such soft devices may be used, for example, to selectively change the surface
roughness (e.g. to perform drag reduction in fluid-structure interactions [64])
or to fabricate tailor-made patterns (e.g. to design adaptive material scaffolds
[186]).
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4.3.5 Appendix – Structure of the matrix M

We report the matrix M we used in the equation Eq. (4.90). We split it into 16

blocks:

M =


0 0 M13 M14

M21 M22 0 0

M31 M32 M33 M34

M41 M42 M43 M44

 ,

where 0 is the null 2× 2 matrix and:

M13 =

[
k̃ αH k̃+k̃−1

−2k̃αµ−αργ −(αH+1)(2k̃αµ+αργ)

]
,

M14 =

[
e2αH k̃ k̃ e2αH k̃(αH k̃+k̃+1)

e2αH k̃(2k̃αµ−αργ) e2αH k̃(αH+1)(2k̃αµ−αργ)

]
, M21 =

[
1 0

−k̃ 1

]
,

M22 =

[
1 0

k̃ 1

]
, M31 =

[
1 1

−k̃ 1−k̃

]
, M32 =

[
e2k̃ e2k̃

e2k̃ k̃ e2k̃(k̃+1)

]
, M33 =

[
−1 −1

k̃ k̃−1

]
,

M34 =

[
−1 −1

−k̃ −k̃−1

]
, M41 =

[
−k̃(αHαργ−2) k̃(2−αHαργ)−2

k̃(αHαργ−2)−γ k̃(αHαργ−2)−(αHαρ+1)γ

]
,

M42 =

[
−e2k̃ k̃(αHαργ−2) e2k̃(k̃(2−αHαργ)+2)

−e2k̃(γ+k̃(αHαργ−2)) −e2k̃(αHαργ+γ+k̃(αHαργ−2))

]
,

M43 =

[
k̃(αHαργ−2αµ) αH k̃αργ−2(k̃−1)αµ

2k̃αµ−αH k̃αργ+αργ (αH+1)αργ+k̃(2αµ−αHαργ)

]
,

M44 =

[
k̃(αHαργ−2αµ) αH k̃αργ−2(k̃+1)αµ

−2k̃αµ+αH k̃αργ+αργ (k̃αH+αH+1)αργ−2k̃αµ

]
.

4.3.6 Appendix – Expressions of the coefficients cj

The coefficient c1 of equation Eq. (4.91) is given by

c1=2k̃2αµ(−2(α2
µ−1)(2α2

H k̃2+1) cosh(2k̃)+2(4α2
H k̃4(αµ−1)2+2k̃2(α2

H(α2
µ+1)+4αHαµ+α2

µ+1)+

−(2k̃2+1)(α2
µ−1) cosh(2αH k̃)+α2

µ+1)+(αµ−1)2 cosh(2(αH−1)k̃)+(αµ+1)2 cosh(2(αH+1)k̃)),

whereas c2 is

c2=k̃(4α2
H k̃2αραµ sinh(2k̃)−4α2

H k̃2αµ sinh(2k̃)+4k̃(αµ(2αH k̃2(αH−(αH+2)αρ)+αρ+1)+

+αH(2k̃2+1)αρ+α2
µ(2αH k̃2+αH))−4k̃2αρ sinh(2αH k̃)+4k̃2α2

µ sinh(2αH k̃)+4αH k̃ cosh(2k̃)(αρ−α2
µ)+

−2αµ cosh(2αH k̃)(2k̃(αρ−1)+(αρ+1) sinh(2k̃))−2αρ sinh(2αH k̃)−αρ sinh(2(αH+1)k̃)+

+αρ sinh(2k̃−2αH k̃)−4α2
µ sinh2(k̃) sinh(2αH k̃)+4αραµ sinh(k̃) cosh(k̃)−4αµ sinh(k̃) cosh(k̃)

)
,

and the expression of c3 is

c3=− 1
2 (αρ−1)αρ(2(2k̃2(2αH+αµ)−(2k̃2+1)αµ cosh(2αH k̃)−2k̃(αH sinh(2k̃)+sinh(2αH k̃))+αµ)+

+(αµ−1) cosh(2(αH−1)k̃)+(αµ+1) cosh(2(αH+1)k̃)−2αµ cosh(2k̃)).





5 C O N C L U S I O N S A N D P E R S P E C T I V E S

This thesis deals with the mathematical modelling of soft and active solids us-
ing continuum mechanics. The results provide useful insights for understand-
ing the emerging non-standard behaviour of such materials, with application
ranging from biology to engineering science.

The research activities concerned both analytical and numerical tasks that
have been developed in order to solve few relevant problems in this field. In
particular, we focused on:

• the well posedness of the constitutive theory of non-linear elastic materi-
als with initial stresses,

• the mathematical description of active phenomena in living matter,

• the pattern formation in soft solids after a mechanical instability.

The main results are briefly summarized in the following.

well posedness of the non-linear model In Chapter 2, we have stud-
ied the mathematical description of elastic bodies in presence of initial stress, i.e.
the tensor field Σ therein corresponding to the Cauchy stress in the reference
configuration.

The classical approach to model initially stressed bodies relies is the theory of
elastic distortions. It is based on the Kröner-Lee multiplicative decomposition
of the deformation gradient F = FeG, where G is the tensor field describing the
inelastic distortion that locally maps the reference configuration to its relaxed
state, while Fe describes the elastic distortion of the body. In this context, the
strain energy density reads

ψ = ψ(F, G) = det Gψ0(FG−1),

where ψ0 is the strain energy density in absence of initial stress. The main
drawback of this approach is that the tensor field G should be constitutively
provided. Indeed, the virtual relaxed configuration is usually not accessible ex-
perimentally due to the necessity of cutting the body to release all the residual
stress.

To overcome these difficulties, we used an alternative approach, known as
theory of initially stressed materials. It is based on the assumption that the
strain energy density constitutively depends on both the deformation gradient
and the initial stress field, namely

ψ = ψ(F; Σ).

119
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While the theory of distortions is quite well studied, this latter approach
is relatively new and few results on the well posedness of the elastic prob-
lem exist. In particular, we investigate the influence of constitutive restrictions
on the existence of elastic minimizers. In the framework of the theory of ini-
tially stressed materials, Johnson and Hoger [119] proved that a virtual relaxed
configuration exists requiring that Σ ∈ C1(Ω0,S(R3)), being ψ = ψ(F; Σ(X))

twice differentiable with respect to both arguments, and the distortion from
the neighbourhood of each point to the free state to be once differentiable in
space. In Theorem 2.3.1 we have weaken the hypotheses of Johnson and Hoger,
proving the existence of a relaxed state locally mapped by a tensor GΣ(X) about
a material point X assuming only a C1 regularity on the dependence of the
strain energy on F, performing a local minimization of the strain energy den-
sity. The collection of the local maps from the reference configuration to the
virtual relaxed state is denoted by Ĝ[Σ].

Furthermore, in Theorem 2.4.1 we have proved that imposing constitutive
assumptions based on the independence on the chosen reference configuration,
known as initial stress reference independence (ISRI), is equivalent to assume
that

ψ(F, Σ) = det Ĝ[Σ]ψ(FĜ[Σ]−1; 0),

so that the initial stress Σ is generated by an elastic distortion. This Theorem
has important consequences also on the mechanical properties. For example,
the material symmetry group and the elastic moduli of the medium are pre-
served for any initial stress field Σ if the ISRI is assumed.
Moreover, in Lemma 2.4.1 we have shown that the polyconvexity of the strain
energy density in the relaxed case is automatically inherited when the body is
initially stressed, if the ISRI is assumed. This has allowed us to extend Ball’s
existence Theorem 1.1.2 to the case of initially stressed materials (see Theo-
rem 2.4.2).

The results of this chapter also allowed us to provide a new mechanical in-
terpretation of the initial stress reference independence. Indeed, in view of
Theorem 2.4.1, the ISRI should be imposed when the initial stress field is pro-
voked only by an elastic distortion of the elastic body and not by a change of
the material properties at the microstructural level. It is well suited to model
the response of bodies with residual stressed caused by volumetric growth or
remodelling. For example, it is too restrictive to describe complex active phe-
nomena, such as the contraction of muscles, due to the change of the mechan-
ical properties of the elastic body induced by the continuous formation and
disruption of crossbridges.

mathematical modelling of active phenomena In Chapter 3, we have
developed a mathematical framework for modelling active processes in soft
biological matter. In particular, we have focused on both the active generation
of force in muscles and the growth of a solid tumour.
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Understanding the constitutive laws describing muscle contraction is crucial
for many applications in biomechanics and several different models of muscle
activation exist in the literature. A possible approach to model the contraction
process is the active strain. As exposed previously, it is based on the multiplica-
tive decomposition of the deformation gradient into an active contribution, due
to the muscle activation, and an elastic one, due to the passive deformation of
the body.
We have shown that it is not possible to recover the experimental stress-stretch
curve corresponding to a uniaxial deformation of a skeletal muscle by simply
assuming the active strain approach, whatever the functional form of the strain
energy. Therefore, we have proposed an alternative model based on a mix-
ture approach. We have proved that this model, called decoupled active strain,
allows us to overcome these difficulties.

We have also focused on the mathematical description of growth in solid tu-
mours, which is useful to target novel therapeutic actions for a more efficient
drug delivery. We have shown that tumours exhibit several mechanical features
of a poroelastic material, where the cellular component behaves like an elastic
solid. In the in-vitro experiments, when the solid component of the cellular
aggregate, known as multicellular tumour spheroid, is loaded at the boundary,
it grows up to an asymptotic volume that depends on the exerted compres-
sion. Residual stress are evidenced by the tumour opening after the tumour
is cut radially, highlighting a peculiar pattern. Introducing a novel numerical
approach, we have correlated the measured opening angle and the underly-
ing residual stress in a sphere. The features of the mechanobiological system
can be explained in terms of the existence of an underlying feedback between
mechanical forces and the cell proliferation rate. This feedback is modulated
by the availability of nutrient, that is radially damped by the balance between
diffusion and consumption. The volumetric growth profiles and the pattern
of residual stress have been reproduced quantitatively assuming a dependence
of the target stress on the concentration of nutrient which is specific of the
malignant tissue.

pattern formation and morpho–elasticity In Chapter 4 we investi-
gated how elastic instabilities can generate patterns in both inert and active soft
matter. The coupling between physical and geometrical non-linearities leads to
non-convex energies that admit multiple local minimizers. Thus, a morpholog-
ical transition may occur as the result of the accumulation of mechanical stress
in the elastic body.

First, we studied the mechanics of growing capillaries in tumours. Indeed,
solid tumours have the ability to assemble their own vascular network for op-
timizing their access to the vital nutrients. These new capillaries are morpho-
logically different from normal physiological vessels. In particular, they have
a much higher spatial tortuosity forcing an impaired flow within the peritu-
moural area. This is a major obstacle for the efficient delivery of antitumoural
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drugs. We proposed a morpho–elastic model of the tumour vessels, in which a
tumour capillary is considered as a growing hyperelastic tube that is spatially
constrained by a linear elastic environment, representing the interstitial mat-
ter. We assumed that the capillary is an incompressible neo–Hookean material,
whose growth is modelled using a multiplicative decomposition of the deforma-
tion gradient. We studied the morphological stability of the capillary by means
of the method of incremental deformations superposed on finite strains, solv-
ing the corresponding incremental problem using the Stroh formulation and the
impedance matrix method. The incompatible axial growth of the straight capil-
lary is found to control the onset of a bifurcation towards a tortuous shape. The
post-buckling morphology is studied using a mixed finite element formulation
in the fully non-linear regime. The proposed model highlights how the geomet-
rical and the elastic properties of the capillary and the surrounding medium
concur to trigger the loss of marginal stability of the straight capillary and the
non-linear development of its spatial tortuosity.

Second, we have exploited the theory of initially stressed materials to study
the morphological stability of a soft incompressible sphere, composed of a
neo–Hookean material and subjected to two different distributions of resid-
ual stresses. The boundary value elastic problem has been studied with an-
alytic and numerical tools. We have performed a linear stability analysis on
the pre-stressed solid sphere using the method of incremental deformations.
The marginal stability conditions are given as a function of a control parameter,
that is the dimensionless variable representing the characteristic intensity of the
spatial distribution of residual stress. We have also performed finite element
simulations using a mixed formulation in order to investigate the post-buckling
morphology in the fully non-linear regime. Considering different distributions
of the residual stresses, we have found that morphological transitions occur
where the hoop residual stress reaches its maximum compressive value. The
loss of spherical symmetry is found to be controlled by the mechanical and ge-
ometrical properties of the sphere, as well as on the spatial distribution of the
residual stress.
The results provide useful guidelines in order to design morphable soft spheres,
for example by controlling the residual stresses through active deformations.
They finally suggest a viable solution for the nondestructive characterization of
residual stresses in soft tissues, such as solid tumors by the means of an inverse
analysis based on wave propagation in soft solids [132].

Finally, we have investigated a new morphological transition in soft solids
that we call elastic Rayleigh–Taylor instability. It concerns a soft body com-
posed of two heavy elastic layers, attached to a rigid surface and subjected only
to the bulk gravity force. An elastic instability is triggered in very soft solids,
so that the increment of the elastic energy is compensated by the reduction of
the gravitational potential energy.
Using theoretical and computational tools, we have characterized the selection
of different patterns as well as their non-linear evolution, unveiling the inter-
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play between elastic and geometric effects for their formation. Unlike similar
gravity-induced shape transitions in fluids, we have proved that the non-linear
elastic effects saturate the dynamic instability of the bifurcated solutions, dis-
playing a rich morphological diagram where both digitations and stable wrin-
kling can emerge. The results of this work provided important guidelines for
the design of novel soft systems with tunable shapes. Indeed, the possibility to
trigger topological transitions exploiting a controllable bulk force or modulat-
ing the geometric and the elastic properties in smart materials, may be used to
selectively change the surface roughness or to fabricate tailor-made patterns.

open challenges and future developments The research field concern-
ing the mathematical modelling of soft and active matter is rapidly expanding
and several open challenges have to be tackled. Beyond the few advances pro-
vided in this thesis, there are several improvements that will be addressed in
future works.

Without pretending to give a full overview of the many open problems in
the field, in the following I summarize some questions that are more directly
related to the main object of this thesis.

For what concerns the mathematical framework of initially stressed materials,
the strain energies developed so far are based on an isotropic response in the
unstressed configuration [97, 98, 2]. Even if the anisotropic may result from an
elastic distortion, these strain energies do not incorporate structural anisotropy,
e.g. due to the presence of fibres.
In order to do so, we should exploit the theory of invariants to write

ψ(X, F; Σ, M1, M2, . . . )

where Mj = M j⊗M j is the structural tensor related to the family of fibres with
direction M j. However, in presence of only one family of fibre, we need to
take into account eighteen independent invariants of [111, 157], leading to an
involved expression of the strain energy. The main challenge is to understand
if further restrictions can be assumed to constrain the functional dependence of
the strain energy on such a large number of invariants.

For what concerns the modelling of active phenomena in biological media,
in this thesis we have presented models based on a macroscopic description
of the physical phenomena. However, the multiphysical exchanges of energy
take place at the micro-scale, as happens for the conversion of chemical and
electrical energy into mechanical stress taking place in sarcomeres. There is the
need to develop a connection between these two scales, obtaining the contin-
uum macroscopic model starting from the microscopic description of the active
processes.
Moreover, the termodynamical description of these processes should be taken
into account, since these systems produce dissipation during activation and
usually operate in out-of-equilibrium conditions.
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Finally, there is the necessity of further developing perturbative theories in
a weakly non-linear regime in solid mechanics for a deeper theoretical under-
standing of pattern formations in soft solids. Moreover, the bifurcation diagram
is usually very complex, with secondary and tertiary branches possibly detach-
ing from the primary bifurcation curve not far from the linear stability thresh-
old [40]. In this perspective, the numerical approximations of the non-linear
problem can be exploited. Whenever the bifurcated branch is connected to the
principal one, continuation algorithms such as the pesudo-arclength method
can be used; otherwise, the deflated continuation method is useful [82]. An-
other big challenge is the study of material instabilities, such as cavitation, frac-
ture, and creasing, since they exhibit an infinite scalable localization in space.
In such a strong topology, very few mathematical tools are available, whilst nu-
merical results heavily rely on the implementation of regularization techniques
that must be validated using homogenization methods.

In conclusion, the description of these materials requires the developing of
advanced mathematical tools. As shown in the thesis, their behaviour is non-
standard, due to the constitutive geometrical and physical non-linearities, the
non-convexity of the energy functional and the multi-physical nature of active
processes.
It is my personal belief that the next progresses in this multidisciplinary re-
search branch will be driven by the development of new mathematical tools,
both to prove basic science insights and to drive engineering applications. Un-
derstanding the behaviours of soft active matter and the related non-linear par-
tial differential systems is a formidable challenge that will require advance-
ments in different fields of pure and applied mathematics, ranging from the
calculus of variations to the application of differential geometry in continuum
mechanics, from the development of new perturbation methods to the improve-
ment of numerical schemes for computational mechanics.
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