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Abstract. The mathematical modeling of the contraction of a muscle is a
crucial problem in biomechanics. Several different models of muscle activation
exist in literature. A possible approach to contractility is the so-called active
strain: it is based on a multiplicative decomposition of the deformation gradi-
ent into an active contribution, accounting for the muscle activation, and an
elastic one, due to the passive deformation of the body.

We show that the active strain approach does not allow to recover the
experimental stress-stretch curve corresponding to a uniaxial deformation of a
skeletal muscle, whatever the functional form of the strain energy. To overcome
such difficulty, we introduce an alternative model, that we call mixture active
strain approach, where the muscle is composed of two different solid phases
and only one of them actively contributes to the active behavior of the muscle.

1. Introduction

Many soft materials undergo morphological transitions when they are subjected
to external stimuli of non-mechanical (e.g. electrical, chemical) nature. Such ma-
terials are called active because of their ability to undergo motion even in absence
of external forces.

An important example of active material is provided by the muscle tissue, which
can contract in presence of an electrical stimulus. A correct constitutive modeling
of both the active and passive behavior is crucial for several biomechanical systems,
such as the modelling of the heart and of the skeletal muscles.

A mathematical description of the muscle tissue poses several challenges. First,
nonlinear constitutive laws are required since a muscle can undergo large defor-
mations. Moreover, a muscle, seen as a material, is strongly anisotropic due to
the presence of muscle fibers; in particular it can be suitably represented as trans-
versely isotropic (as in the case of the skeletal muscle) or orthotropic material (as
happens in the myocardium, due to the occurrence of two families of fibers). Fur-
thermore, the process of activation of a muscle is very complex and involves several
mechanisms at the microstructural level [4, 28].
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A robust constitutive model accounting for the ability of a muscle to contract is
far from being established. During the last few decades, several methods have been
developed to model the active behavior of muscles in the framework of continuum
mechanics [18, 1]. The most popular one is the so called active stress [1]. Such an
approach involves an additive split of the total stress into a passive and an active
component [32, 23, 20]. Another approach is the active strain, a technique based on
the theory of elastic distortions. In a biomechanical context, such an approach was
first introduced by Kondaurov and Nikitin, and further developed by Taber and
Perucchio [17, 33, 18]. The active strain has been employed in several models (e.g.
[6, 31, 21, 25]) due to its robust mathematical properties and the clear physical
interpretation: the muscle contraction corresponds to a geometrical remodelling of
the microstructure of the body [8, 29].

While the active strain approach guarantees some suitable mathematical prop-
erties, the flexibility of the active stress in general allows a better accordance with
the experimental results [1, 31, 13, 10]. Nevertheless, the preservation of the well
posedness of the mathematical problem is not always guaranteed by the latter ap-
proach [24, 1] and could manifest itself in unexpected numerical issues. The active
stress formulation is so general that includes the active strain as a particular case
[10].

The aim of this article is to compare experimental data on the uniaxial isometric
activation of a skeletal muscle [35, 12] with a stress field predicted by the active
strain theory. We show that a plain active strain approach is intrinsically unable
to reproduce experimental data, but suitable modifications can be effective in this
respect.

The work is organized as follows: in Section 2 we review the active strain ap-
proach and its mathematical properties, in Section 3 we compare the experimental
data of Hawkins and Bey [12] with the stress-stretch curves predicted by the active
strain approach. In Section 4 we propose an alternative model based on the mixture
active strain method.

2. The active strain approach

We denote by L+(R3) the set of all the linear maps L : R3 → R3 with positive
determinant. Moreover, we indicate with U+(R3) the subset of L+(R3) composed
of all the linear applications L such that det L = 1

Let Ω0 and Ωe be the reference and the actual configuration of an elastic body
respectively. We denote with X ∈ Ω0 the material position vector and with
ϕ : Ω0 → Ωe the motion function. We denote by F = Gradϕ the deformation
gradient tensor.

We assume that the material is incompressible and hyperelastic and we denote by
ψ0 the strain energy density of the passive material. Thus, the first Piola–Kirchhoff
stress of the passive material is given by

(1) P0 =
∂ψ0

∂F
− pF−T , (P0)ij =

∂ψ0

∂Fij
− pF−1ji ;

where p is the Lagrangian multiplier that enforces the incompressibility constraint
detF = 1.

When the body is activated, we assume that the deformation gradient admits a
multiplicative decomposition of the form

(2) F = FeFa,

where Fa accounts for the local distortion of the material due to the activation.
Such an approach is inspired by the theory of elastoplasticity: the decomposition

(2) is usually referred as Kröner-Lee decomposition. To the best of our knowledge,
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its first application in the field of biomechanics is due to Kondaurov and Nikitin
and it has been perfected by Taber and Perucchio [17, 33].

The distortion field Fa : Ω0 → U+(R3) is to be constitutively prescribed. As far
as it concerns the activation of a muscle, we assume that Fa determines no variation
in the local volume, hence detFa = 1.

The activation-induced distortion of the body can lead to a geometrically in-
compatible configuration, namely there may not exist a vector map such that Fa
is its gradient: Fa is not integrable. The integrability of F is restored by another
component Fe that accounts for the elastic distortion of the body [30].

The tensor field Fe describes the elastic “deformation” due to the presence of
external and internal forces and to the restoration of the geometrical compatibility.
Hence, the strain energy of the activated material ψ : Ω0 → Ωe is given by

(3) ψ(F) = ψ0(Fe) = ψ0(FF−1a ),

and the first Piola–Kirchhoff stress tensor reads

P =
∂ψ

∂F
− pF−T =

∂ψ

∂Fe
F−Ta − pF−T .

The active strain approach possesses nice mathematical properties. In fact, if
the strain energy density ψ0 is rank-one convex or polyconvex, then ψ preserves
such properties [19, 1].

3. Activation as a linear mapping

The aim of this section is to compare the experimental results on the isometric
uniaxial activation of a skeletal muscle with the stress fields predicted by the active
strain approach. We focus on the work of Hawkins and Bey [12] who performed
traction experiments on a rat tibialis anterior muscle in isometric conditions.

We denote the local direction of the fibers by the vector field M with |M | = 1.
A common choice for Fa, inspired by the microstructural architecture, is given by

(4) Fa = (1− γ)M +
1√

1− γ (I−M),

where 0 ≤ γ < 1 is a parameter that describes the microstructural degree of
contraction of the muscle (0 corresponds to the relaxed muscle), M = M ⊗M
and ⊗ denotes the diadic product. By performing such a choice for the active
strain Fa we assume that the contraction of the sarcomere preserves the cylindrical
symmetry along the axis identified by the direction M .

Let us denote with Fλ the deformation gradient that corresponds to the uniaxial
deformation along the anisotropic direction M , i.e.

(5) Fλ = λM +
1√
λ

(I−M).

Making use of (1), we can define the function φ as

φ (λ) := ψ0(Fλ),

in the passive case. Because of the specific form of the active deformation (4), in a
uniaxial deformation (5) the strain energy density takes the specific form

(6) ψ(Fλ) = φ

(
λ

1− γ

)
.

Differentiating ψ(Fλ) with respect to λ, we obtain the principal stress in the
direction M :

(7) PM (λ, γ) =
dψ(Fλ)

dλ
,



4 ACTIVATION AS A MAPPING OF STRESS-STRAIN CURVES

so that, exploiting the relation (6) and applying the chain rule, we get

PM (λ, γ) =
1

1− γ φ
′
(

λ

1− γ

)
.

Out of a rescaling of the strain and stress, the stress-stretch relation P (λ, γ) is
therefore completely characterized by its passive behaviour. In fact, if we know the
passive response

PM (λ, 0) =
dψ0(Fλ)

dλ
= φ′(λ),

then if the muscle is activated we can obtain PM (λ, γ) by rescaling the variable of
the function φ(λ).

Indeed, from (7) we can observe that

(8) PM (λ, γ) =
1

1− γ φ
′
(

λ

1− γ

)
=

1

1− γ PM

(
λ

1− γ , 0

)
.

Thus, the stress-stretch curve of the activated muscle can be straightforwardly
obtained by rescaling the stress and the strain variables by the same factor (1−γ)−1.

Unfortunately, such a representation of the activation process is too restrictive
to reproduce the experimental results obtained from measuring PM in a tetanized
muscle [35, 12]. Hawkins and Bey measured the stress-strain relation of the passive
muscle and of the tetanized muscle in isometric conditions (Fig. 1). In fact, from
the experimental plot in Fig. 1 (top) we observe that the passive material exhibits
a strain hardening effect when λ ≥ 1.3. When the muscle is activated, the curve
stress vs strain has a completely different slope: there is a change of concavity and
a strain hardening for λ ≥ 1.3 and no self-similar transformation reproduces it.

A qualitative attempt to fit of the physiological plot using the active strain
approach is obtained by mapping the experimental curve of the passive muscle
in Fig. 1 (top) into the activated one by the rescaling defined by the equation
(8) according to the following procedure. Every point of the stress-stretch plane
(λ0, P0) that belongs to the stress-stretch curve of the passive material can be
mapped on the activated curve making use of (8). Indeed, we get that the rescaling

(9) (λ, P ) =

(
λ0(1− γ),

P0

1− γ

)
,

provides the stress-stretch curve of the activated material.
Such a rescaling is applied to the passive curve for several γ and the results are

shown in Fig. 1 (bottom). It is apparent that in this way it is not possible to obtain
a stress-stretch curve that fits the experimental data for the contracted muscle. In
fact, the strain hardening is anticipated as we increase γ and the curve obtained
interpolating the experimental data is not convex for 0.7 < λ < 1.2. Thus, the
active strain approach cannot reproduce the uniaxial deformation of a contracted
skeletal muscle.

We remark that the result of this section do not assume any specific strain energy
function to model the passive behavior of the muscle; it is just a rescaling of an
experimental curve. Our unique assumption is that the activation of the muscle
reads as a contraction along the direction of the fibers that preserves volumes, as
in equation (4).

4. An alternative approach: the mixture active strain approach

A possible alternative method is to model the muscle as a material composed of
two solid phases, only one of them actively contributing to the muscle contraction.

Let us consider a strain energy density such that

ψ = ψiso + ψani
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Figure 1. (top) Stress-stretch data obtained from the uniaxial
traction experiments of Hawkins and Bey [12]. (bottom) Stress-
stretch curves of the uniaxial traction obtained from the passive
data by assuming the active strain approach and using (9), here
γ varies from 0 up to 0.4 by steps of 0.05. The arrow denotes the
direction along which γ grows.

where ψiso is the isotropic part of the strain energy whilst ψani describes the con-
tribution provided by the fibers. We assume that ψiso is only passive and does not
give any contribution to the active behavior of the muscle.

The only part of the energy that can provide an active contribution is the func-
tion ψani. Thus, we describe the muscle as a mixture of passive (like elastin, ran-
domly distributed collagen) and active materials (like the sarcomeres). We call this
approach mixture active strain [14, 11, 22, 10].

The first Piola–Kirchhoff stress now reads

P =
∂ψiso

∂F
+
∂ψani

∂F
− pF−T
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while the principal stress in the direction M , denoted by PM , produced by the
deformation Fλ is

PM (λ, γ) = P iso
M (λ) + P ani

M (λ, γ)

where

P iso
M (λ) =

dψiso(Fλ)

dλ
P ani
M (λ, γ) =

dψani(FλF
−1
a )

dλ
.

In analogy with (8) we can introduce the following representation

P ani
M (λ, γ) =

1

1− γ P
ani
M

(
λ

1− γ , 0

)
.

Hence, the purely active contribution arising from the contraction of the muscle is
due to the anisotropic contribution and it is given by

P act
M (λ, γ) = PM (λ, γ)− PM (λ, 0) =

1

1− γ P
ani
M

(
λ

1− γ , 0

)
− P ani

M (λ, 0).

Such a function is expected to fit the experimental data of Hawkins and Bey [12]
relative to the active contribution to the stress PM (see Fig. 1). Indeed, setting
γ = γmax corresponding to the maximal contraction of the sarcomere, we get that
P act
M (λ, γmax) should reproduce the difference between the stress generated by the

tetanized muscle and the stress generated by the passive body: to perform this
comparison, we have to chose a specific strain energy density.

Let us introduce the following invariants

I1 = trC, J = detF, I4 = tr(CM),

where C = FTF is the right Cauchy-Green tensor.
We choose to model the isotropic part of the muscle as a Gent material [9], so

that the strain energy density is given by

(10) ψiso(F) = −µImax

2
log

(
1− I1 − 3

Imax

)
where µ is the shear modulus and Imax is a parameter that sets the maximum value
reachable by I1.

The anisotropic part of the strain energy is instead given by

(11) ψani(F) = αβ
(
I4

1
2β − 1

)2
.

Thus the fibres contribute to the strain energy only if there is a deformation in
the direction M . We remark that the constitutive choice (10), while specific, is
very popular in the mechanics of soft tissues [9, 15, 16, 26, 27]. The anisotropic
component of the strain energy (11) usually in literature involves the square root
I4 [5]. In this work we adopt a power law with exponent 1/(2β) to account for the
reported change in convexity of PM versus λ (see Fig. 1 top).

The total strain energy of the activated material is hence given by

(12) ψ(F) = ψiso(F) + (detFa)ψani(FF
−1
a )

where Fa is given by (4).
Thus, for detFa = 1 the Piola–Kirchhoff stress tensor reads

P(F) = Piso(F) + Pani(FF
−1
a )F−Ta − pF−T ,

where

Piso(F) =
∂ψiso

∂F
= µ

(
1− I1 − 3

Imax

)−1
F,

Pani(F) =
∂ψani

∂F
= 2α

I4
1
2β − 1

I4
2β−1
2β

FM.
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In particular, in the case of a uniaxial deformation in the direction M , we can
compute the principal stresses PM and P ani

M in the direction M , namely

P iso
M (λ) =

dψiso(Fλ)

dλ
= µ

(
1− λ2 + 2λ−1 − 3

Imax

)−1 (
λ− λ−1

)

P ani
M (λ, γ) =

dψani(FλF
−1
a )

dλ
=

2α
(

λ
1−γ

)1/β ((
λ

1−γ

)1/β
− 1

)
λ

.

Thus, the total principal stress

PM (λ, γ) = P iso
M (λ) + P ani

M (λ, γ)
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Figure 2. Plot of the normalized principal stresses P iso
M /µ (top)

and P ani
M /α (bottom). We set Imax = 1 and β = 2. In the bottom

plot, γ varies between 0 and 0.5 by steps of 0.05.
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Figure 3. Plot of PM when µ = 1.8 kPa, Imax = 0.41, α =
31 kPa, β = 1.5 and γ varies from 0 to 0.5 with steps of 0.05.

is given by

PM (λ, γ) = µ

(
1− λ2 + 2λ−1 − 3

Imax

)−1 (
λ− λ−1

)
+

2α
(

λ
1−γ

)1/β ((
λ

1−γ

)1/β
− 1

)
λ

.

In Fig. 2 we plot the principal stresses P iso
M (λ) and P ani

M (λ, γ) normalized with
respect to µ and α, respectively. In Fig. 3 we plot the total principal stress PM (λ, γ)
where we set µ = 1.8 kPa, Imax = 0.41, α = 31 kPa and β = 1.5. Increasing the
activation parameter γ, the stress-stretch relationship is in good agreement with
the experimental data of Fig. 1 for γ ∼ 0.5.

However, the model has some limitations. The compressive branch of the pas-
sive curve can not be compared with the measures of Hawkins and Bey. In the
experimental literature, many works report that the passive stress generated per-
forming a uniaxial compression along the direction of the fibers is lower than the
one occurring in extension [34]. Even though other research groups measure stress
of the same order of magnitude of the one obtained in extension, in one case even
higher [36, 3, 2] (see [34] for a comparison between the data), the majority of the
experimental works report a softer behaviour in compression, in contrast with our
prediction for λ < 0.8 in the passive case. Also the high slope in the active case
of the stress-strain curve at the intersection with the λ-axis is inaccurate. In order
to obtain a softer behaviour in compression, it would be necessary to employ a
more involved expression of the strain energy densities ψiso and ψani and it is not
the focus of our work (e.g. considering an anisotropic energy also for the passive
constituent of the muscle).

Summarizing, we have shown that using an active strain approach for the aniso-
tropic part of the strain energy density only, one can quantitatively reproduce the
behaviour of the skeletal muscle in extension. The mixed active strain approach
allows to overcome two limitations of the “pure” active strain. First, increasing
the activation parameter, the strain stiffening appears always at λ = 1.3. Second,
we observe a change of concavity in the stress-strain curve in the tetanized case
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(γ = 0.5) at λ ' 1.1 (Fig. 3). Mathematical issues raised by the mixture active
strain are the subject of the next section.

4.1. Material symmetry group and muscle activation. Even if the mixture
active strain approach better fits the experimental data with respect to the active
strain, it remains an open question whether such approach preserves or not some
mathematical properties. For the “global” active strain approach (3), rank-one
convexity is preserved [1]; in the mixture approach, if the strain energy functional
is rank-one convex globally in the passive case, we cannot state rank-one convexity
without further assumptions on ψiso and ψani. If both ψiso and ψani are rank-one
convex, then

δF :
∂2ψ(F)

∂F∂F
: δF = δF :

∂2ψiso(F)

∂F∂F
: δF + δFF−1a :

∂2ψani(F)

∂F∂F
: δFF−1a > 0

for all δF which are rank-one since also δFF−1a is a rank-one tensor [1]. If the
material is incompressible, δF must also belong to the tangent space to the manifold
detF = 1, namely F−T : δF = 0.

The same happens for polyconvexity: if both the ψiso and ψani are polyconvex
in the passive case, then the polyconvexity is preserved in the active case. This is
a direct consequence of Lemma 6.5 in [19].

The active strain preserves the material properties during muscle contraction.
Indeed, the multiplicative decomposition of the deformation gradient is equivalent
to a remodelling, leading to a change of the relaxed state of the body [7, 8]. Other
methods, such as the active stress or the mixture active strain, do not correspond to
a remodelling and a modification the material properties, such as the shear modulus
or the material symmetries, can take place as a consequence of material activation.
If we use the language introduced by Epstein [8], there is change of the archetype
of the body.

It is expected that the symmetry group of the material is preserved, during
muscle activation, since the contraction of sarcomeres does not generate any new
structural anisotropy. Let

Giso =
{
Q ∈ U+(R3) | ψiso(FQ) = ψiso(F)∀F ∈ U+(R3)

}
,

Gani =
{
Q ∈ U+(R3) | ψani(FQ) = ψani(F)∀F ∈ U+(R3)

}
.

The material symmetry group of the passive muscle is given by G = Giso ∩ Gani. If
the muscle is activated, the material symmetry group of the anisotropic part of the
energy becomes [8]

Ĝani = F−1a GFa,

and so the material symmetry group of the whole energy reads Ĝ = Giso ∩ Ĝani.
It is easy to verify that if ψiso is isotropic and ψani is transversely isotropic

with direction of symmetry M , if we apply an activation of the form (4), then the
symmetry group of the material is not modified by the mixture active strain, i.e.
G = Ĝ.

Summarizing, the active strain approach corresponds to a remodelling [8, 29]:
there is only a morphological change in the relaxed configuration and the properties
of the material are conserved. In the previous sections, we have proved that the
active strain cannot fit the experimental data of the uniaxial extension of a skeletal
muscle. During muscle contraction, the mutual positions of the actin and myosin
filaments change, leading to a modification of the microstructure: the increased
number of cross bridges should result into a different stiffness of the tissue. The
active strain approach allows to describe the modification of shape induced by
muscle contraction but it does not take into account the evolution of the material
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properties induced by the formation of cross bridges (i.e. the shear modulus of the
material does not change).

Conversely, the mixture active strain approach correctly reproduces the experi-
mental data for the uniaxial traction of the muscle, without changing the symmetry
group of the material.

5. Discussion of the results and concluding remarks

In this paper, we have analyzed some aspects related to the modelization of
muscle activation. First, in Section 2 we have provided a review of the active strain
approach for modeling the activation of an elastic medium. In Section 3 we have
compared theoretical predictions vs. experimental data provided by Hawkins and
Bey [12]. We have showed that, independently from the chosen passive model, the
active strain approach cannot reproduce the stress-stretch curve of the tetanized
tibialis anterior muscle.

According to the classification made by Epstein [8], the active strain approach
corresponds to a remodelling of a material, namely a change of shape that does not
affect the material properties and the microstructure. The inadequacy discussed
above shows that the contraction of the muscle is not a simple remodelling and the
microstructure of the tissue and the material properties change.

Since it is not possible to model the skeletal muscle contraction as a pure remod-
elling, in Section 4 we have proposed a model of the muscle alternative to the active
strain obtained by a mixture approach, applying the Kröner–Lee decomposition of
the deformation gradient only on one component (the anisotropic part) of the strain
energy density. To make quantitative comparisons, we have used a Gent strain en-
ergy density for the isotropic part and the strain energy (11) for the anisotropic
one. Such a simple approach, called mixture active strain, provides results which
are in good agreement with the experimental ones in extension.

Convexity properties are preserved if both the isotropic and the anisotropic part
of the strain energy are polyconvex or rank-one convex. Also the material symmetry
group is preserved if ψani is transversely isotropic along the direction M and Fa
has the form (4).

It is to be remarked that while a correct representation of the stretch-stress
curve for uniaxial homogeneous deformation is a mandatory requirement, it is not
sufficient to obtain a reliable model for a generic deformation, in particular in shear
[10]; a deeper understanding of the possible change in the microstructure and in
the material properties due to the process of muscle activation is required.

The results of this work may support the development of models of the muscle
tissue activity: a reliable mathematical description of the skeletal muscles or of the
whole heart are active and open research topics in biomechanics and in the field of
biomedical engineering.
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